Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Storms from the Sun
by Staff Writers
Greenbelt MD (SPX) Mar 12, 2012


illustration only

Space weather starts at the Sun. It begins with an eruption such as a huge burst of light and radiation called a solar flare or a gigantic cloud of solar material called a coronal mass ejection (CME).

But the effects of those eruptions happen at Earth, or at least near-Earth space. Scientists monitor several kinds of space "weather" events - geomagnetic storms, solar radiation storms, and radio blackouts - all caused by these immense explosions on the Sun.

Geomagnetic Storms
One of the most common forms of space weather, a geomagnetic storm refers to any time Earth's magnetic environment, the magnetosphere, undergoes sudden and repeated change. This is a time when magnetic fields continually re-align and energy dances quickly from one area to another.

Geomagnetic storms occur when certain types of CMEs connect up with the outside of the magnetosphere for an extended period of time. The solar material in a CME travels with its own set of magnetic fields. If the fields point northward, they align with the magnetosphere's own fields and the energy and particles simply slide around Earth, causing little change.

But if the magnetic fields point southward, in the opposite direction of Earth's fields, the effects can be dramatic. The Sun's magnetic fields peel back the outermost layers of Earth's fields changing the whole shape of the magnetosphere. This is the initial phase of a geomagnetic storm.

The next phase, the main phase, can last hours to days, as charged particles sweeping into the magnetosphere accumulate more energy and more speed. These particles penetrate closer and closer to the planet. During this phase viewers on Earth may see bright aurora at lower latitudes than usual. The increase - and lower altitude - of radiation can also damage satellites traveling around Earth.

The final stage of a geomagnetic storm lasts a few days as the magnetosphere returns to its original state.

Geomagnetic storms do not always require a CME. Mild storms can also be caused by something called a corotating interaction region (CIR). These intense magnetic regions form when high-speed solar winds overtake slower ones, thus creating complicated patterns of fluctuating magnetic fields. These, too, can interact with the edges of Earth's magnetosphere and create weak to moderate geomagnetic storms.

Geomagnetic storms are measured by ground-based instruments that observe how much the horizontal component of Earth's magnetic field varies. Based on this measurement, the storms are categorized from G1 (minor) to G5 (extreme).

In the most extreme cases transformers in power grids may be damaged, spacecraft operation and satellite tracking can be hindered, high frequency radio propagation and satellite navigation systems can be blocked, and auroras may appear much further south than normal.

Solar Radiation Storms
A solar radiation storm, which is also sometimes called a solar energetic particle (SEP) event, is much what it sounds like: an intense inflow of radiation from the Sun. Both CMEs and solar flares can carry such radiation, made up of protons and other charged particles. The radiation is blocked by the magnetosphere and atmosphere, so cannot reach humans on Earth.

Such a storm could, however, harm humans traveling from Earth to the Moon or Mars, though it has little to no effect on airplane passengers or astronauts within Earth's magnetosphere. Solar radiation storms can also disturb the regions through which high frequency radio communications travel. Therefore, during a solar radiation storm, airplanes traveling routes near the poles - which cannot use GPS, but rely exclusively on radio communications - may be re-routed.

Solar radiation storms are rated on a scale from S1 (minor) to S5 (extreme), determined by how many very energetic, fast solar particles move through a given space in the atmosphere. At their most extreme, solar radiation storms can cause complete high frequency radio blackouts, damage to electronics, memory and imaging systems on satellites, and radiation poisoning to astronauts outside of Earth's magnetosphere.

Radio Blackouts
Radio blackouts occur when the strong, sudden burst of X-rays from a solar flare hits Earth's atmosphere, jamming both high and low frequency radio signals. The X-rays disturb a layer of Earth's atmosphere known as the ionosphere, through which radio waves travel. The constant changes in the ionosphere change the paths of the radio waves as they move, thus degrading the information they carry.

This affects both high and low frequency radio waves alike. The loss of low frequency radio communication causes GPS measurements to be off by feet to miles, and can also affect the applications that govern satellite positioning.

Radio blackouts are rated on a scale from R1 (minor) to R5 (extreme). The strongest radio blackouts can result in no radio communication and faulty GPS for hours at a time.

.


Related Links
-
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
NASA Solar Study Mission Moves to Next Design Stage
Laurel MD (SPX) Mar 12, 2012
Two-thousand-degree temperatures, supersonic solar particles, intense radiation - all of this awaits NASA's Solar Probe Plus during an unprecedented close-up study of the sun. The team led by the Johns Hopkins University Applied Physics Laboratory (APL), which has been developing the spacecraft for this extreme environment, has been given the nod from NASA to continue design work on the pr ... read more


SOLAR SCIENCE
Apollo 11: 'A Stark Beauty All Its Own'

Magnetic moon

Twin GRAIL Spacecraft Begin Collecting Lunar Science Data

Apollo 12: Pinpoint Landing on the Ocean of Storms

SOLAR SCIENCE
Rep. Schiff Applauds Decision to Reject NASA Request to Divert Mars Funds

Winter Studies of 'Amboy' Rock Continue

NASA Mars Orbiter Catches Twister in Action

Working models for the gravitational field of Phobos

SOLAR SCIENCE
SciTechTalk: Rembering a space 'Pioneer'

Tile Makers Creating Orion Shield

Weird and wonderful gadgets wow world's top IT fair

O, Pioneers! (part 2): The Derelicts of Space

SOLAR SCIENCE
Three for Tiangong

China hopes to send Long March-5 rocket into space in 2014

Upgraded carrier rocket ready for China's first manned space docking

Long March 7 carrier rocket to lift off in five years

SOLAR SCIENCE
ISS Plays Role in Vaccine Development

Though Shuttle Retired, ISS Still Open For Business, Research Going Strong

New date set for Europe's resupply mission to ISS

A New Website Sharing ISS Benefits For Humanity

SOLAR SCIENCE
ILS Announces A New Contract For The ILS Proton Launch Of The Mexsat-1 Satellite

Launch Madness at Wallops in March - "Five in Five"

Engineers Tuck NuSTAR in its Nose Cone

Lockheed Martin Selects Alaska's Kodiak Launch Complex To Support Future Athena Launches

SOLAR SCIENCE
Stars with Dusty Disks Should Harbor Earth-like Worlds

Star Comb joins quest for Earth-like planets

Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

SOLAR SCIENCE
Garafolo tests spacecraft seal to verify computer models

Andrews Space Contracted to Deliver 100 Series Command and Data Handling System for GEO Application

Astrium wins Helios through life support contract extension

Researchers 'Print' Polymers That Bend Into 3-D Shapes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement