. | . |
Storing energy in plants with electronic roots by Staff Writers Linkoping, Sweden (SPX) Nov 12, 2021
By watering bean plants (Phaseolus vulgaris) with a solution that contains conjugated oligomers, researchers at the Laboratory of Organic Electronics, Linkoping University, have shown that the roots of the plant become electrically conducting and can store energy. Dr Eleni Stavrinidou, Associate Professor and Principal Investigator in the Electronic Plants Group at the Laboratory of Organic Electronics, showed in 2015 that circuits can be fabricated in the vascular tissue of roses. The conducting polymer PEDOT was absorbed by the plant's vascular system to form electrical conductors that were used to make transistors. In a later work in 2017, she demonstrated that a conjugated oligomer, ETE-S, could polymerise in the plant and form conductors that can be used to store energy. "We have previously worked with plants cuttings, which were able to take up and organise conducting polymers or oligomers. However, the plant cuttings can survive for only a few days, and the plant is not growing anymore. In this new study we use intact plants, a common bean plant grown from seed, and we show that the plants become electrically conducting when they are watered with a solution that contains oligomers", says Eleni Stavrinidou. The researchers here have used a trimer, ETE-S, which is polymerised by a natural process in the plant. A conducting film of polymer is formed on the roots of the plant, which causes the complete root system to function as a network of readily accessible conductors. The bean plant roots remained electrically conducting for at least four weeks, with a conductivity in the roots of approximately 10 S/cm (Siemens per centimetre). The researchers investigated the possibility of using the roots to store energy, and built a root-based supercapacitor in which the roots functioned as electrodes during charging and discharging. "Supercapacitors based on conducting polymers and cellulose are an eco-friendly alternative for energy storage that is both cheap and scalable", says Eleni Stavrinidou. The root-based supercapacitor worked well, and could store 100 times more energy than previous experiments with supercapacitors in plants that used the plant stem. The device can also be used over extended periods of time since the bean plants in the experiments continued to live and thrive. "The plant develops a more complex root system, but is otherwise not affected: it continues to grow and produce beans", Eleni Stavrinidou assures us. The results, which have been published in the scientific journal Materials Horizons, are highly significant, not just for the development of sustainable energy storage, but also for the development of new biohybrid systems, such as functional materials and composites. The electronic roots are also a major contribution to the development of seamless communication between electronic and biological systems. The research group consists of researchers from the Laboratory of Organic Electronics, the Umea Plant Science Center, the Wallenberg Wood Science Center at Linkoping University, and from universities and research institutes in France, Greece and Spain. Funding bodies for the research have included the EU Horizon Programme FET-OPEN-HyPhOE, the Swedish Research Council, the Wallenberg Wood Science Center, and the Strategic Research Area in Materials Science on Functional Materials (AFM) at Linkoping University.
Research Report: "Biohybrid plants with electronic roots via in-vivo polymerization of conjugated oligomers"
A new dimension in magnetism and superconductivity launched Vienna, Austria (SPX) Nov 04, 2021 Traditionally, the primary fideld, where curvature is playing a pivotal role, is the theory of general relativity. In recent years, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics to chemistry and biology, giving rise to a plethora of emerging domains, such as curvilinear cell biology, semiconductors, superfuidity, optics, plasmonics and 2D van der Waals materials. In modern magnetism, superconductivity and spintronics, ex ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |