Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Stellar Death Caught In The Act
by Staff Writers
Palomar Mountain CA (SPX) May 23, 2008


File image of supernova.

Thanks to a fortuitous observation with NASA's Swift satellite, astronomers for the first time have caught a star in the act of exploding. Astronomers have previously observed thousands of stellar explosions, known as supernovae, but they have always seen them after the fireworks were well underway.

"For years we have dreamed of seeing a star just as it was exploding, but actually finding one is a once-in-a-lifetime event," says Alicia Soderberg a Hubble and Carnegie Princeton Fellow at Princeton University, who is leading the group studying this explosion. "This newly born supernova is going to be the Rosetta Stone of supernova studies for years to come."

Led by Shrinivas Kulkarni, MacArthur Professor of Astronomy and Planetary Science and director of Caltech Optical Observatories, Caltech astronomers including graduate student Bradley Cenko and others undertook detailed observations with the automated Palomar 60-inch and the 200-inch telescopes. "It may well be that supernovae occur more commonly than we thought," remarked Kulkarni.

A typical supernova occurs when the core of a massive star runs out of nuclear fuel and collapses under its own gravity to form an ultradense object known as a neutron star. The newborn neutron star compresses and then rebounds, triggering a shock wave that plows through the star's gaseous outer layers and blows the star to smithereens. Astronomers thought for nearly four decades that this shock "breakout" produces bright X-ray emission lasting a few minutes.

But until this discovery, astronomers have never observed this signal. Instead, they have observed supernovae brightening days or weeks later, when the expanding shell of debris is energized by the decay of radioactive elements forged in the explosion.

"Seeing the shock breakout in Xrays can give a direct view of the exploding star in the last minutes of its life and also provide a signpost to which astronomers can quickly point their telescopes to watch the explosion unfold," says Edo Berger, also a Hubble and Carnegie-Princeton Fellow.

Soderberg's discovery of the first shock breakout can be attributed to luck and Swift's unique design. On January 9, 2008, Soderberg and Berger were using Swift to observe a supernova known as SN 2007uy in the spiral galaxy NGC 2770, located 90 million light-years from Earth in the constellation Lynx. At 9:33 a.m. EST they spotted an extremely bright five-minute X-ray outburst in NGC 2770. They quickly recognized that the X-rays were coming from another location in the same galaxy.

In a paper submitted to Nature, Soderberg and 38 colleagues show that the energy and pattern of the X-ray outburst is consistent with a shock wave bursting through the surface of the progenitor star. This marks the birth of the supernova now known as SN 2008D.

Although astronomers were lucky that Swift was observing NGC 2770 just at the moment when SN 2008D's shock wave was blowing up the star, Swift is well equipped to study such an event because of its multiple instruments observing in gamma rays, Xrays, and ultraviolet light.

"It was a gift of nature for Swift to be observing that patch of sky when the supernova exploded. But thanks to Swift's flexibility, we have been able to trace its evolution in detail every day since," says Swift lead scientist Neil Gehrels of NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Due to the significance of the X-ray outburst, Soderberg immediately mounted an international observing campaign to study SN 2008D. Observations were made with major telescopes such as the Hubble Space Telescope, the Chandra X-ray Observatory, the Very Large Array in New Mexico, the Gemini North telescope in Hawaii, the Keck I telescope in Hawaii, the 200-inch and 60-inch telescopes at the Palomar Observatory in California, and the 3. 5-meter telescope at the Apache Point Observatory in New Mexico.

The combined observations helped Soderberg and her colleagues pin down the energy of the initial X-ray outburst, which will help theorists better understand supernovae. The observations also show that SN 2008D is an ordinary Type Ibc supernova, which occurs when a massive, compact star explodes. Significantly, radio and X-ray observations confirmed that the event was a supernova explosion, and not a related, rare type of stellar outburst known as a gamma-ray burst.

.


Related Links
Swift
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Supernova Birth Seen For First Time
Pasadena CA (SPX) May 23, 2008
Astronomers have seen the aftermath of spectacular stellar explosions known as supernovae before, but until now no one has witnessed a star dying in real time. While looking at another object in the spiral galaxy NGC 2770, using NASA's orbiting Swift telescope, Carnegie-Princeton fellows Alicia Soderberg and Edo Berger detected an extremely luminous blast of X-rays released by a supernova explos ... read more


STELLAR CHEMISTRY
X PRIZE Foundation Holds Team Summit On Private Moon Race To Land A Robot

Astronaut Health On Moon May Depend On Good Dusting

Inhaling For Exploration As Scientists Test Lunar Breathing System

Send Your Name To The Moon With New Lunar Mission

STELLAR CHEMISTRY
Phoenix Mission To Mars Will Search For Climate Clues

UCF Invention Onboard Phoenix Mars Lander Will Reveal True Colors

Secrets Of Martain Suitability For Life May Be Down In The Dirt

Radio Telescopes To Keep Sharp Eye On Mars Lander

STELLAR CHEMISTRY
ESA And Space Tourism

Why Do Astronauts Suffer From Space Sickness

NASA's 50th birthday marked in art exhibit

NASA Seeks Industry Partners For Innovation Transfusion Program

STELLAR CHEMISTRY
Suits For Shenzhou

China Launches New Space Tracking Ship To Serve Shenzhou VII

Three Rocketeers For Shenzhou

China's space development can pose military threat: Japan

STELLAR CHEMISTRY
NASA: Space station view is good this week

NASA TV Airs High-Def Day In The Life Of An ISS Astronaut

Russian Cargo Spacecraft Docks With ISS

NASA Extends Space Station Contract With ARES

STELLAR CHEMISTRY
Arianespace Completes The Assembly Of Another Ariane 5

Zenit Rocket Powers A Successful Sea Launch Campaign

Sea Launch Initiates Countdown For Launch Of Galaxy 18

Spaceport Kourou Welcomes Fourth Ariane 5 Launch Campaign For 2008

STELLAR CHEMISTRY
Exoplanet Hunt Update

Planets By The Dozen

Record-Setting Laser May Aid Searches For Earthlike Planets

Exo-Planet Roadmap Advisory Team Appointed By ESA

STELLAR CHEMISTRY
Self-Repairing Aircraft Could Revolutionize Aviation Safety

Northrop Grumman Resonating Gyro Achieves 10 Million Operating Hours In Space

US, China Space Debris Still Orbiting Earth

LIDAR Detector Will Build Three-Dimensional Super Roadmaps Of Planets And Moons




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement