. | . |
Stars shrouded in iron dust by Staff Writers La Laguna, Spain (SPX) Jan 24, 2019
Stars with masses between one and eight times the mass of the Sun evolve along the asymptotic giant branch (AGB) before ending their lives as white dwarfs. It is during this rapid but crucial phase when the stars expand to huge dimensions and cool down, losing a major fraction of their mass due to the strong stellar winds. The low temperature and high density of the winds provide ideal conditions for the condensation of dust grains in their circumstellar envelopes. The dust produced by the stars in their AGB phase and expelled into the interstellar medium is important for the lives of the galaxies, because this is an essential component for the formation of new stars, and also of planets. That is why characterising the type of dust (solid state organic components, or inorganic components) and the quantity of dust produced by these giant stars is very interesting to the astronomical community. The journal The Astrophysical Journal Letters has published a study which has answers to the puzzles of a peculiar group of massive AGB stars situated in the Large Magellanic Cloud. Comparing the infrared observations made with the Spitzer Space Telescope (and predictions for the future James Webb Space Telescope) with the theoretical models developed by this group, they have discovered that these stars have masses around 5 solar masses, were formed around 100 million years ago, and are poor in metals (such as iron, magnesium and silicon). Unexpectedly they have discovered that the infrared spectral energy distributions can be reproduced only if iron dust is the principal dust component of their circumstellar envelopes. This is uncommon around massive AGB stars. Before it was known that they mainly produced silicates, large quantities of dust rich in oxygen and silicon, as well as magnesium. But this finding is even more surprising if we consider the metal poor environment of the stars under study. We have characterized for the first time this class of stars with unique spectral properties. The low metallicity of these giant stars is the essential ingredient which gives peculiar conditions permitting the formation of large quantities of iron dust" explains Ester Marini, the first author of the article and a doctoral student at the Roma Tre University. She adds "In fact, in metal poor environments the complex nucleosynthesis within massive AGB stars is so advanced that it burns up almost all the magnesium and oxygen, necessary to form other types of dust, such as the silicates". Under these particular conditions iron dust becomes the main component of the dust formed by these stars. "This result is an important confirmation of the theory of iron dust in metal poor environments, already hinted at in independent observational evidence" says the IAC researcher Anibal Garcia Hernandez, a co-author of the work, and one of the initiators of the fruitful collaboration between the IAC and the Osservatorio Astronomico di Roma (OAR-INAF) on these type of giant AGB stars. "The arrival of the James Webb Space Telescope (JWST) will open up new possibilities for investigating this case in depth", comments Flavia Dell'Agli, a postdoctoral researcher at the IAC, and second author of the article. She adds "That future telescope will greatly enhance the number of resolved extragalactic AGB stars" and that the MIRI instrument on the JWST will be "ideal for identifying this class of stars in other galaxies of the Local Group".
Last Breath of a Dying Star Garching, Germany (SPX) Jan 23, 2019 The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time - around 10,000 years, a blink of an eye in astronomical terms. ESO's Very Large Telescope captured this shell of glowing ionised gas - the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. An evanescent shell of glowing gas spreading into ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |