. 24/7 Space News .
EXO WORLDS
Star's death will play a mean pinball with rhythmic planets
by Staff Writers
Warwick UK (SPX) Jun 14, 2021

Artist's impression of the four planets of the HR 8799 system and its star.

Four planets locked in a perfect rhythm around a nearby star are destined to be pinballed around their solar system when their sun eventually dies, according to a study led by the University of Warwick that peers into its future.

Astronomers have modelled how the change in gravitational forces in the system as a result of the star becoming a white dwarf will cause its planets to fly loose from their orbits and bounce off each other's gravity, like balls bouncing off a bumper in a game of pinball.

In the process, they will knock nearby debris into their dying sun, offering scientists new insight into how the white dwarfs with polluted atmospheres that we see today originally evolved. The conclusions by astronomers from the University of Warwick and the University of Exeter are published in the Monthly Notices of the Royal Astronomical Society.

The HR 8799 system is 135 light years away and comprises a 30-40 million year-old A type star and four unusually massive planets, all over five times the mass of Jupiter, orbiting very close to each other. The system also contains two debris discs, inside the orbit of the innermost planet and another outside the outermost.

Recent research has shown that the four planets are locked in a perfect rhythm that sees each one completing double the orbit of its neighbour: so for every orbit the furthest completes, the next closest completes two, the next completes four, while the closest completes eight.

The team from Warwick and Exeter decided to learn the ultimate fate of the system by creating a model that allowed them to play 'planetary pinball' with the planets, investigating what may cause the perfect rhythm to destabilise.

They determined that the resonance that locks the four planets is likely to hold firm for the next 3 billion years, despite the effects of Galactic tides and close flybys of other stars. However, it always breaks once the star enters the phase in which it becomes a red giant, when it will expand to several hundred times its current size and eject nearly half its mass, ending up as a white dwarf.

The planets will then start to pinball and become a highly chaotic system where their movements become very uncertain. Even changing a planet's position by a centimetre at the start of the process can dramatically change the outcome.

Lead author Dr Dimitri Veras from the University of Warwick Department of Physics said: "The planets will gravitationally scatter off of one another. In one case, the innermost planet could be ejected from the system. Or, in another case, the third planet may be ejected. Or the second and fourth planets could switch positions. Any combination is possible just with little tweaks.

"They are so big and so close to each other the only thing that's keeping them in this perfect rhythm right now is the locations of their orbits. All four are connected in this chain. As soon as the star loses mass their locations will deviate, then two of them will scatter off one another, causing a chain reaction amongst all four."

Dr Veras was supported by an Ernest Rutherford Fellowship from the Science and Technology Facilities Council, part of UK Research and Innovation.

Regardless of the precise movements of the planets, one thing that the team is certain of is that the planets will move around enough to dislodge material from the system's debris discs into the atmosphere of the star. It is this type of debris that astronomers are analysing today to discover the histories of other white dwarf systems.

Dr Veras adds: "These planets move around the white dwarf at different locations and can easily kick whatever debris is still there into the white dwarf, polluting it.

"The HR 8799 planetary system represents a foretaste of the polluted white dwarf systems that we see today. It's a demonstration of the value of computing the fates of planetary systems, rather than just looking at their formation."

Co-author Professor Sasha Hinkley of the University of Exeter said: "The HR 8799 system has been so iconic for exoplanetary science since its discovery nearly 13 years ago, and so it is fascinating to see into the future, and watch it evolve from a harmonious collection of planets into a chaotic scene."

Research Report: "The post-main-sequence fate of the HR 8799 planetary system"


Related Links
University Of Warwick
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Liquid water on exomoons of free-floating planets
Munich, Germany (SPX) Jun 14, 2021
The moons of planets that have no parent star can possess an atmosphere and retain liquid water. Astrophysicists at LMU have calculated that such systems could harbor sufficient water to make life possible - and sustain it. Water - in liquid form - is the elixir of life. It made life possible on Earth and is indispensable for the continuing existence of living systems on the planet. This explains why scientists are constantly on the lookout for evidence of water on other solid bodies in the Univer ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Trip to space with Jeff Bezos sells for $28 mn

Marshall ships air filtration hardware to Wallops for ISS

Boeing plans second Starliner capsule test flight in July

NASA seeks proposals for next 2 private astronaut missions to ISS

EXO WORLDS
Debris from carrier rocket drop safely

NASA pursues greener, more efficient spacecraft propulsion

China launches four satellites with Long March-2D rocket

NASA, SpaceX Update Crew Launch and Return Dates

EXO WORLDS
Mars rover to move south after testing

China reveals photos taken by Mars rover

Perseverance Rover Begins Its First Science Campaign on Mars

NASA's Mars helicopter Ingenuity flies for 7th time

EXO WORLDS
Stringent training will help fulfill spacewalk mission

China in space for cooperation, not zero-sum race

Rocket blasts off carrying first Chinese crew to new space station

China ready to launch first crew to new space station

EXO WORLDS
A new animation shows 'A day without space'

Voyage 2050 sets sail: ESA chooses future science mission themes

SES Renews Long-Term Relationship with Comcast Technology Solutions

MIT study compares the four largest internet meganetworks

EXO WORLDS
Juice moves into Large Space Simulator

G7 nations commit to the safe and sustainable use of space

From NASA spacesuit research to racing suit underwear

Rare earth metals at the heart of China's rivalry with US, Europe

EXO WORLDS
Star's death will play a mean pinball with rhythmic planets

Liquid water on exomoons of free-floating planets

Connecting a star's chemical composition and planet formation

Scientists discover new exoplanet with an atmosphere ripe for study

EXO WORLDS
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.