Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Stars Cheek By Jowl In The Early Universe
by Staff Writers
London, UK (SPX) Feb 13, 2009


The background image was taken by Dr Michael Hilker of the University of Bonn using the 2.5-metre Du Pont telescope, part of the Las Campanas Observatory in Chile. The two boxes show close-ups of two UCD galaxies in the Hilker image. These images were made using the Hubble Space Telescope by a team led by Professor Michael Drinkwater of the University of Queensland. For a larger version of this picture please go here.

In our Galaxy, we are used to the idea that even the nearest stars are light years away from the Sun. But a team of scientists led by Professor Pavel Kroupa of the University of Bonn think things were very different in the early Universe.

In particular, Ultra Compact Dwarf galaxies (UCDs), a recently discovered class of object, may have had stars packed together a thousand times more closely than in the solar neighbourhood, according to calculations made by team member and PhD student Joerg Dabringhausen and presented in a paper in Monthly Notices of the Royal Astronomical Society.

UCDs were discovered in 1999. Although they are still enormous by everyday standards, at about 60 light years across, they are less than 1/1000th the diameter of our own Galaxy, the Milky Way. (In more familiar units, a light year is about 10 million million km).

Astronomers believe that UCDs were created when more normal galaxies collided in the early Universe. But oddly, UCDs clearly have more mass than the light from the stars they contain would imply.

Up to now, exotic dark matter has been suggested to explain this 'missing mass', but this is not thought to gather in sufficient quantities within a UCD. In their paper Mr Dabringhausen, Professor Kroupa and their colleague Dr Holger Baumgardt present a different explanation.

The astronomers think that at one time, each UCD had an incredibly high density of stars, with perhaps 1 million in each cubic light year of space, compared with the 1 that we see in the region of space around the Sun.

These stars would have been close enough to merge from time to time, creating many much more massive stars in their place. These more massive stars consume hydrogen (their nuclear fuel) much more rapidly, before ending their lives in violent supernova explosions. All that then remains is either a superdense neutron star or sometimes a black hole.

So in today's UCDs, a good part of their mass is made up of these dark remnants, largely invisible to Earth-based telescopes but fossils of a more dramatic past.

Mr Dabringhausen comments, "Billions of years ago, UCDs must have been extraordinary. To have such a vast number of stars packed closely together is quite unlike anything we see today. An observer on a (hypothetical) planet inside a UCD would have seen a night sky as bright as day on Earth."

.


Related Links
University of Bonn
Royal Astronomical Society (RAS)
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
First Lab Experiment To Accurately Model Stellar Jets Explains Mysterious Knots
Rochester NY (SPX) Feb 11, 2009
Some of the most breathtaking objects in the cosmos are the jets of matter streaming out of stars, but astrophysicists have long been at a loss to explain how these jets achieve their varied shapes. Now, laboratory research detailed in the current issue of Astrophysical Review Letters shows how magnetic forces shape these stellar jets. ... read more


STELLAR CHEMISTRY
Detailed map shows dry Moon

Lunar Reconnaissance Orbiter Is Shipped To Florida

Astronomers Will Train MMT Telescope On Moon During 2009 Impact

NASA Selects Teams For Moon Impact Observation Campaign

STELLAR CHEMISTRY
Spirit Gets Energy Boost From Cleaner Solar Panels

NASA Spacecraft Falling For Mars

Martian winds help Earth's rover Spirit

Opportunity Update: Happy Anniversary! - sol 1770-1776

STELLAR CHEMISTRY
Iran To Launch First Manned Spaceflight By 2021

EU lays out voluntary space code

NASA Receives Shorty Twitter Award

NASA awards launch services contract

STELLAR CHEMISTRY
Satellite Collision Not To Delay China's Space Program

China plans own satellite navigation system by 2015: state media

Fengyun-3A Weather Satellite Begins Weather Monitoring

Shenzhou-7 Monitor Satellite Finishes Mission After 100 Days In Space

STELLAR CHEMISTRY
Russian supply craft arrives at space station: agency

Satellite collision poses 'small' risk to ISS: NASA

Columbus, One Year On Orbit

Happy Birthday, Columbus!

STELLAR CHEMISTRY
Ariane 5 - First Launch Of 2009

Ariane 5 Is Cleared For Its First Mission Of 2009

Proton-M Rocket Orbits 2 New Telecom Satellites

Assembly Begins On Second Ariane 5 For The Year

STELLAR CHEMISTRY
COROT Discovers Smallest Exoplanet Yet

Worlds apart: Satellite spots smallest 'exoplanet' ever

Spitzer Watches Wild Weather On A Star-Skimming Planet

Astronomers Get A Sizzling Weather Report From A Distant Planet

STELLAR CHEMISTRY
Russia Blames Iridium

Satellite collision raises concern over space traffic, debris

Pentagon fails to anticipate satellite collision

When Satellites Collide




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement