. | . |
Star Caught Smoking Stellar Trash
Nice, France (SPX) Aug 06, 2007 Using ESO's Very Large Telescope Interferometer, astronomers from France and Brazil have detected a huge cloud of dust around a star. This observation is further evidence for the theory that such stellar puffs are the cause of the repeated extreme dimming of the star. R Coronae Borealis stars are supergiants exhibiting erratic variability. Named after the first star that showed such behaviour, they are more than 50 times larger than our Sun. R Coronae Borealis stars can see their apparent brightness unpredictably decline to a thousandth of their nominal value within a few weeks, with the return to normal light levels being much slower. It has been accepted for decades that such fading could be due to obscuration of the stellar surface by newly formed dusty clouds. This 'Dust Puff Theory' suggests that mass is lost from the R Coronae Borealis (or R CrB for short) star and then moves away until the temperature is low enough for carbon dust to form. If the newly formed dust cloud is located along our line-of-sight, it eclipses the star. As the dust is blown away by the star's strong light, the 'curtain' vanishes and the star reappears. RY Sagittarii is the brightest member in the southern hemisphere of this family of weird stars. Located about 6,000 light-years away towards the constellation of Sagittarius (The Archer), its peculiar nature was discovered in 1895 by famous Dutch astronomer Jacobus Cornelius Kapteyn. In 2004, near-infrared adaptive optics observations made with NACO on ESO's Very Large Telescope allowed astronomers Patrick de Laverny and Djamel Mekarnia to clearly detect the presence of clouds around RY Sagittarii. This was the first direct confirmation of the standard scenario explaining the light variations of R CrB stars by the presence of heterogeneities in their envelope surrounding the star. However, the precise place where such dust clouds would form was still unclear. The brightest cloud detected was several hundred stellar radii from the centre, but it had certainly formed much closer. But how much closer? To probe the vicinity of the star, the astronomers then turned to ESO's Very Large Telescope Interferometer. Combining two different pairs of the 8.2-m Unit Telescopes and using the mid-infrared MIDI instrument that allows detecting cold structures, the astronomers explored the inner 110 astronomical units [2] around the star. Given the remoteness of RY Sagittarii, this corresponds to looking at details on a one-euro coin that is about 75 km away! The astronomers found that a huge envelope, about 120 times as big as RY Sagittarii itself, surrounds the supergiant star. But more importantly, the astronomers also found evidence for a dusty cloud lying only about 30 astronomical units away from the star, or 100 times the radius of the star. "This is the closest dusty cloud ever detected around a R CrB-type variable since our first direct detection in 2004," says Patrick de Laverny, leader of the team. "However, it is still detected too far away from the star to distinguish between the different scenarios proposed within the Dust Puff Theory for the possible locations in which the dusty clouds form." If the cloud moves at the speed of 300 km/s, as one can conservatively assume, it was probably ejected more than 6 months before its discovery from deeper inside the envelope. The astronomers are now planning to monitor RY Sagittarii more carefully to shed more light on the evolution of the dusty clouds surrounding it. "Two hundred years after the discovery of the variable nature of R CrB, many aspects of the R CrB phenomenon remain mysterious," concludes de Laverny. [1]: R Coronae Borealis (R CrB) is a star barely visible with the unaided eye in the constellation of Coronae Borealis (The Northern Crown). Its variable nature was discovered by Edward Pigott, an English amateur astronomer, around 1795. "A snapshot of the inner dusty regions of a R CrB-type variable", by I.C. Leao et al., Astronomy and Astrophysics 466, L1-L4, 2007 The team is composed of P. de Laverny, I.C. Leao, and D. Mekarnia (Observatoire de la Cote d'Azur, Cassiopee, France), O. Chesneau (Observatoire de la Cote d'Azur, Gemini, France), and J.R. De Medeiros (Universidade Federal do Rio Grande do Norte, Natal, Brazil). CommunityEmail This Article Comment On This Article Related Links Observatoire de la Cote d'Azur Stellar Chemistry, The Universe And All Within It
Circumstellar Space Where Chemistry Happens For The Very First Time St Louis MO (SPX) Aug 02, 2007 Picture a cool place, teeming with a multitude of hot bodies twirling about in rapidly changing formations of singles and couples, partners and groups, constantly dissolving and reforming. If you were thinking of the dance floor in a modern nightclub, think again. It's a description of the shells around dying stars, the place where newly formed elements make compounds and life takes off, said Katharina Lodders, Ph.D., research associate professor of earth and planetary sciences in Arts and Sciences at Washington University in St. Louis. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |