. 24/7 Space News .
CARBON WORLDS
Stanford physicists discover new quantum trick for graphene: magnetism
by Staff Writers
Stanford CA (SPX) Jul 31, 2019

file illustration only

Sometimes the best discoveries happen when scientists least expect it. While trying to replicate another team's finding, Stanford physicists recently stumbled upon a novel form of magnetism, predicted but never seen before, that is generated when two honeycomb-shaped lattices of carbon are carefully stacked and rotated to a special angle.

The authors suggest the magnetism, called orbital ferromagnetism, could prove useful for certain applications, such as quantum computing. The group describes their finding in the July 25 issue of the journal Science.

"We were not aiming for magnetism. We found what may be the most exciting thing in my career to date through partially targeted and partially accidental exploration," said study leader David Goldhaber-Gordon, a professor of physics at Stanford's School of Humanities and Sciences. "Our discovery shows that the most interesting things turn out to be surprises sometimes."

The Stanford researchers inadvertently made their discovery while trying to reproduce a finding that was sending shockwaves through the physics community. In early 2018, Pablo Jarillo-Herrero's group at MIT announced that they had coaxed a stack of two subtly misaligned sheets of carbon atoms - twisted bilayer graphene - to conduct electricity without resistance, a property known as superconductivity.

The discovery was a stunning confirmation of a nearly decade-old prediction that graphene sheets rotated to a very particular angle should exhibit interesting phenomena.

When stacked and twisted, graphene forms a superlattice with a repeating interference, or moire, pattern. "It's like when you play two musical tones that are slightly different frequencies," Goldhaber-Gordon said. "You'll get a beat between the two that's related to the difference between their frequencies. That's similar to what you get if you stack two lattices atop each other and twist them so they're not perfectly aligned."

Physicists theorized that the particular superlattice formed when graphene is rotated to 1.1 degrees causes the normally varied energy states of electrons in the material to collapse, creating what they call a flat band where the speed at which electrons move drops to nearly zero. Thus slowed, the motions of any one electron becomes highly dependent on those of others in its vicinity. These interactions lie at the heart of many exotic quantum states of matter.

"I thought the discovery of superconductivity in this system was amazing. It was more than anyone had a right to expect," Goldhaber-Gordon said. "But I also felt that there was a lot more to explore and many more questions to answer, so we set out to try to reproduce the work and then see how we could build upon it."

A series of fortunate events
While attempting to duplicate the MIT team's results, Goldhaber-Gordon and his group introduced two seemingly unimportant changes.

First, while encapsulating the honeycomb-shaped carbon lattices in thin layers of hexagonal boron nitride, the researchers inadvertently rotated one of the protective layers into near alignment with the twisted bilayer graphene.

"It turns out that if you nearly align the boron nitride lattice with the lattice of the graphene, you dramatically change the electrical properties of the twisted bilayer graphene," said study co-first author Aaron Sharpe, a graduate student in Goldhaber-Gordon's lab.

Secondly, the group intentionally overshot the angle of rotation between the two graphene sheets. Instead of 1.1 degrees, they aimed for 1.17 degrees because others had recently shown that twisted graphene sheets tend to settle into smaller angles during the manufacturing process.

"We figured if we aim for 1.17 degrees, then it will go back toward 1.1 degrees, and we'll be happy," Goldhaber-Gordon said. "Instead, we got 1.2 degrees."

An anomalous signal
The consequences of these small changes didn't become apparent until the Stanford researchers began testing the properties of their twisted graphene sample. In particular, they wanted to study how its magnetic properties changed as its flat band - that collection of states where electrons slow to nearly zero - was filled or emptied of electrons.

While pumping electrons into a sample that had been cooled close to absolute zero, Sharpe detected a large electrical voltage perpendicular to the flow of the current when the flat band was three-quarters full. Known as a Hall voltage, such a voltage typically only appears in the presence of an external magnetic field - but in this case, the voltage persisted even after the external magnetic field had been switched off.

This anomalous Hall effect could only be explained if the graphene sample was generating its own internal magnetic field. Furthermore, this magnetic field couldn't be the result of aligning the up or down spin state of electrons, as is typically the case for magnetic materials, but instead must have arisen from their coordinated orbital motions.

"To our knowledge, this is the first known example of orbital ferromagnetism in a material," Goldhaber-Gordon said. "If the magnetism were due to spin polarization, you wouldn't expect to see a Hall effect. We not only see a Hall effect, but a huge Hall effect."

Strength in weakness
The researchers estimate that the magnetic field near the surface of their twisted graphene sample is about a million times weaker than that of a conventional refrigerator magnet, but this weakness could be a strength in certain scenarios, such as building memory for quantum computers.

"Our magnetic bilayer graphene can be switched on with very low power and can be read electronically very easily," Goldhaber-Gordon said. "The fact that there's not a large magnetic field extending outward from the material means you can pack magnetic bits very close together without worrying about interference."


Related Links
Stanford University - School of Humanities and Sciences
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
A graphene superconductor that plays more than one tune
Berkeley CA (SPX) Jul 22, 2019
Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a graphene device that's thinner than a human hair but has a depth of special traits. It easily switches from a superconducting material that conducts electricity without losing any energy, to an insulator that resists the flow of electric current, and back again to a superconductor - all with a simple flip of a switch. Their findings were reported in the journal Nature. "Usually, whe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
French inventor to hover across English Channel on 'flyboard'

US spacecraft's solar sail successfully deploys

Indigenous Congo foragers learn early to use sun for orientation

Japan's Noguchi to Be 1st Foreign Astronaut to Join New US Spacecraft Crew for ISS Mission

CARBON WORLDS
SpaceX cargo launch to space station now targeting Wednesday

Apollo's legacy: A quiet corner of Alabama that is forever Germany

India to make new bid to launch Moon rocket on Monday

Von Braun: Apollo hero, rocket builder for Hitler, father

CARBON WORLDS
Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

ExoMars radio science instrument readied for Red Planet

Mars 2020 Rover: T-Minus One Year and Counting

CARBON WORLDS
Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

CARBON WORLDS
OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

Maxar begins production on Legion-class satellite for Ovzon

CARBON WORLDS
Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times

CARBON WORLDS
ELSI scientists discover new chemistry that may help explain the origins of cellular life

Scientists deepen understanding of magnetic fields surrounding Earth and other planets

Super salty, subzero Arctic water provides peek at possible life on other planets

Astronomers expand cosmic "cheat sheet" in hunt for life

CARBON WORLDS
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.