. 24/7 Space News .
STELLAR CHEMISTRY
Squeezed states of light can improve feedback cooling significantly
by Staff Writers
Lyngby, Denmark (SPX) Nov 30, 2016


SEM micrograph of a microtoroidal resonator similar to the one used for demonstration of quantum-enhanced feedback cooling. The silica torus forms a cavity for light which is modulated by the mechanical vibrations of the supporting disk. Light is coupled in and out of the system by bringing a tapered optical fiber in proximity of the torus. Image courtesy Kristian Rasmussen, DTU. For a larger version of this image please go here.

How does the tightrope walker manage to maintain her balance and avoid that fatal drop from the sky? She carefully senses the motion of her body and vibrations of the rope and accordingly compensates any deviation from equilibrium by shifting her center of gravity. In a thermally excited system, the amplitude of the mechanical vibrations are directly linked to the system's temperature. Thus, by eliminating vibrations the system is cooled to a lower effective temperature.

In recent experiments at DTU Physics, researchers have employed a quantum-enhanced feedback technique to dampen the motion of a micron-sized mechanical oscillator, thereby cooling its temperature by more than 140 degrees below room temperature. Most importantly, this work demonstrates a novel application of squeezed light allowing an improved sensitivity to the mechanical motion and thereby a more efficient extraction of information on how the damping feedback should be tailored.

In the experiment, the mechanical motion of a microtoroidal resonator was continuously sensed using laser light circulating inside the resonator. Using that information an electric feedback force that was always out of phase with the instantaneous motion was tailored and applied - that is, when the motion was directed upwards the feedback force would counteract this by pushing the toroid downwards and vice versa.

Using ordinary - classical - laser light, this technique is ultimately limited by the intrinsic quantum noise of the probe laser, and that sets the classical limit for how efficient the feedback cooling can be.

As now demonstrated by DTU researchers, this limit can be surpassed by using quantum-engineered squeezed light. In the experiment, an improvement of more than 12% over the classical limiting temperature was achieved. This improvement was limited by inefficiencies of the specific system resulting in a loss of information on the mechanical motion.

The full potential of the demonstrated technique can be unfolded by application to state-of-the-art optomechanical systems, holding promises for reaching the motional quantum ground state of a mechanical oscillator in room temperature experiments.

Achieving this would pave the way for a plethora of new optomechanical investigations of fundamental quantum physics and constitute a crucial step towards development of new quantum technologies for sensing and information processing based on micromechanical oscillators.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technical University of Denmark
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Squeezing light into new miniature devices
Seoul, South Korea (SPX) Nov 29, 2016
Do you think your computer is fast enough? Think again. The computers of the future could work almost at the speed of light! Nanophotonics, the study of light at the nanometer scale, could indeed bring the speed of our technology to a completely different level. The Center for Integrated Nanostructure Physics (CINAP) within the Institute for Basic Science (IBS) have developed three key com ... read more


STELLAR CHEMISTRY
Embry-Riddle Students Join Project PoSSUM to Test Prototype Spacesuits in Zero-G

NASA on the hunt for space poop geniuses

Orion Crew Module Adapter Lifted in Processing Facility at NASA's Kennedy Space Center

Expandable Habitat Reveals Important Early Performance Data

STELLAR CHEMISTRY
Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

STELLAR CHEMISTRY
Mars Ice Deposit Holds as Much Water as Lake Superior

Computer glitch blamed for European Mars lander crash

ESA's new Mars orbiter prepares for first science

NASA field test focuses on science of lava terrains, like Early Mars

STELLAR CHEMISTRY
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

STELLAR CHEMISTRY
Vita: next Space Station mission name and logo

Charyk helped chart the course of satellite communications

Intelsat and Intelsat General support hurricane Matthew recovery efforts

Boeing to consolidate defense and space sites

STELLAR CHEMISTRY
Inside tiny tubes, water turns solid when it should be boiling

Model could shatter a mystery of glass

More reliable way to produce single photons for quantum information imprinting

For platinum catalysts, tiny squeeze gives big boost in performance

STELLAR CHEMISTRY
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

STELLAR CHEMISTRY
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.