Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Spintronics advance brings wafer-scale quantum devices closer to reality
by Staff Writers
Chicago IL (SPX) Jul 09, 2015


Light polarizes silicon nuclear spins within a silicon carbide chip. This image portrays the nuclear spin of one of the atoms shown in the full crystal lattice below. Image courtesy of Peter Allen. For a larger version of this image please go here.

An electronics technology that uses the "spin" - or magnetization - of atomic nuclei to store and process information promises huge gains in performance over today's electron-based devices. But getting there is proving challenging. Now researchers at the University of Chicago's Institute for Molecular Engineering (IME) have made a crucial step toward nuclear spintronic technologies.

They have gotten nuclear spins to line themselves up in a consistent, controllable way, and they have done it using a high-performance material that is practical, convenient, and inexpensive.

"Our results could lead to new technologies like ultra-sensitive magnetic resonance imaging, nuclear gyroscopes, and even computers that harness quantum mechanical effects," said Abram Falk, the lead author of the report on the research, which was featured as the cover article of the June 17 issue of Physical Review Letters.

Falk and colleagues in David Awschalom's IME research group invented a new technique that uses infrared light to align spins. And they did so using silicon carbide (SiC), an industrially important semiconductor.

Nuclear spins tend to be randomly oriented. Aligning them in a controllable fashion is usually a complicated and only marginally successful proposition. The reason, explains Paul Klimov, a co-author of the paper, is that "the magnetic moment of each nucleus is tiny, roughly 1,000 times smaller than that of an electron."

This small magnetic moment means that little thermal kicks from surrounding atoms or electrons can easily randomize the direction of the nuclear spins. Extreme experimental conditions such as high magnetic fields and cryogenic temperatures (-238 degrees Fahrenehit and below) are usually required to get even a small number of spins to line up. In magnetic resonance imaging (MRI), for example, only one to 10 out of a million nuclear spins can be aligned and seen in the image, even with a high magnetic field applied.

Using their new technique, Awschalom and his associates aligned more than 99 percent of spins in certain nuclei in silicon carbide (SiC). Equally important, the technique works at room temperature - no cryogenics or intense magnetic fields needed. Instead, the research team used light to "cool" the nuclei.

While nuclei do not themselves interact with light, certain imperfections, or "color-centers," in the SiC crystals do. The electron spins in these color centers can be readily optically cooled and aligned, and this alignment can be transferred to nearby nuclei.

Had the group tried to achieve the same degree of spin alignment without optical cooling they would have had to chill the SiC chip physically to just five millionths of a degree above absolute zero (-459.6 degrees Fahrenheit).

Getting spins to align in room-temperature silicon carbide brings practical spintronic devices a significant step closer, said Awschalom, the Liew Family Professor in Spintronics and Quantum Information.

The material is already an important semiconductor in the high-power electronics and opto-electronics industries. Sophisticated growth and processing capabilities are already mature. So prototypes of nuclear spintronic devices that exploit the IME researchers' technique may be developed in the near future. Said Awschalom: "Wafer-scale quantum technologies that harness nuclear spins as subatomic elements may appear more quickly than we anticipated."

"Optical Polarization of Nuclear Spins in Silicon Carbine," by Abram L. Falk, Paul V. Klimov, Viktor Ivady, Krisztian Szasz, David J. Christle, William F. Koehl, Adam Gali, and David D. Awschalom, Physical Review Letters, 114, 247603 (2015), DOI: 10.1103. Published June 17, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Chicago
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Fabricating inexpensive, high-temp SQUIDs for future electronic devices
Washington DC (SPX) Jul 09, 2015
High-transition-temperature superconductivity within copper-oxide materials was discovered in 1986, and quickly set into motion an intense research effort by scientists and engineers around the globe to develop superconducting electronics capable of operating at and above liquid nitrogen temperatures (77 Kelvin). In nearly three decades of working to develop and realize the potential of th ... read more


CHIP TECH
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

CHIP TECH
Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Opportunity Rover's 7th Mars Winter to Include New Study Area

Could This Become the First Mars Airplane

CHIP TECH
US selects four astronauts for commercial flight

NASA selects leading-edge concepts for continued study

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

CHIP TECH
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

CHIP TECH
'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

CHIP TECH
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

CHIP TECH
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

CHIP TECH
Brownian motion phenomena of self-powered liquid metal motors

Omnidirectional free space wireless charging developed

To conduct, or to insulate? That is the question

Nanospiked bacteria are the brightest hard X-ray emitters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.