Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Spillways can divert sand from river to rebuild wetlands
by Liz Ahlberg, Physical Sciences Editor University of Illinois
Champaign IL (SPX) Aug 01, 2012


Oblique aerial photograph of a dune field in the Bonnet Carre Spillway. Sand deposits were worked into trains of dunes when flood water flowed in the spillway. Once the flood subsided and the spillway was closed, the water drained and dried from the spillway, thereby exposing the dunes. Trees and shrubs near the top of the photograph provide scale. Photo by Jeffrey Nittrouer.

Researchers could have a new method to rebuild wetlands of the Louisiana delta, thanks to a chance finding while monitoring severe flooding of the Mississippi River. A team of civil engineers and geologists from the University of Illinois, in collaboration with the U.S. Army Corps of Engineers, published their findings in the journal Nature Geoscience.

In the spring and summer of 2011, high floodwaters on the Mississippi prompted the corps to open the Bonnet Carre spillway. The spillway had been built to divert water from urban New Orleans after flooding in 1927. The Illinois team saw in the spillway opening a chance to study how much sand flowed from the river into the spillway wetlands.

"Whenever we have such natural disasters, it stresses the human system quite a bit," said Praveen Kumar, a professor of civil and environmental engineering at the U. of I. "But it also offers an opportune time to look at some scientific questions that we might otherwise not be able to explore."

Armed with funds from the National Science Foundation, the researchers went to the spillway site to monitor the sand diverted from the river to the delta wetlands.

They discovered a surprising dichotomy: a mere 10 to 15 percent of water from the top of the river sloshed into the spillway, but an estimated 36 to 41 percent of the river's sand load deposited into the Bonnet Carre.

"That was a completely unexpected finding in this particular study," said postdoctoral researcher Jeffrey Nittrouer.

"I think one of the real strong outcomes that came from this particular study is that we happened to be lucky about where the site was placed.

"Back when the structure was built, the Army Corps of Engineers just wanted to get water out of the river. But it turns out that where they decided to place the spillway was a fantastic location for getting sand out as well."

The findings were exciting to the team, because diverting river sediment has been a goal of research work to build up wetlands. Coastal wetlands act as a natural buffer against storm surges, protecting residential areas from the turbulent weather along the gulf.

Under natural conditions, flooding periodically would inundate the wetlands, allowing sediment overflow to deposit incrementally over time to replace ground lost to erosion. However, since the urbanization of New Orleans, the extensively engineered levee system has cut off the river from the wetlands.

"We're essentially putting a straitjacket on the river itself, disconnecting the river from the surrounding environment and preventing these natural exchange processes," Nittrouer said.

"Because we build communities along these rivers, we build levee systems that corral all that water and sediment and take it straight to the Gulf of Mexico."

What caused such a large percentage of sand to divert to the spillway in such a small amount of water? The researchers believe that the local conditions at that point in the river hold the answer. The spillway is on the inside of a bend and adjacent to a sandbar.

"That acts as a means of allowing for sustained high-concentration sandy water to be positioned very near the spillway itself, so that sediment-enriched water is now spilling into the floodway and that sediment is depositing out," Nittrouer said.

Now, the researchers will further explore how local river conditions could favor the movement of sediment from the river into the neighboring wetland spillway.

They plan to use modeling and lab studies to find optimal conditions that could shunt sediment out of the river, with the eventual goal of designing other spillways that could be opened strategically to rebuild lost wetlands without flooding residential areas.

Geology professor James Best, geology and civil and environmental engineering professor Gary Parker, graduate students Ronald Cash and Matthew Czapiga, and corps engineer Christopher Brantley were co-authors of the study.

.


Related Links
University of Illinois
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Ancient reservoir could bring water to dry Namibia
Windhoek (AFP) July 27, 2012
A stone-age underground water reservoir could transform life in arid Namibia, a government official said Friday, holding up to five million cubic metres of water that could supply the area for 400 years. "If the underground water reservoir is indeed there and scientifically proven, it would be a relief for the supply of potable water in northern Namibia," Abraham Nehemia, under secretary for ... read more


WATER WORLD
US flags still on the moon, except one: NASA

Another Small Step for Mankind

Russia starts building Moon spaceship, eyes Lunar base

Plans to revisit Moon impeded by financial difficulties

WATER WORLD
Successes and failures in past Mars attempts

Strange but True: Curiosity's Sky Crane

NASA braces for 'terror' in Mars landing

Driving on Mars, There's an App for That

WATER WORLD
Science fiction comes to life in Italian lab

XCOR Releases Payload Users Guide for Lynx Suborbital Vehicle

NASA Offers Condolences on the Passing of Pioneering Astronaut Sally Ride

Sally Ride, first US woman in space dead at 61

WATER WORLD
China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

Looking Forward to Shenzhou 10

WATER WORLD
A Fish Friendly Facility for the ISS

Russian cargo ship manages to dock at ISS on second try

Another Progress Freighter Re-Docking Attempt Set for July 29

Japanese cargo craft docks with ISS

WATER WORLD
The go-ahead is given for Arianespace's August 2 flight with Ariane 5

Initial assembly is completed for Arianespace's fifth Ariane 5 to be launched in 2012

Checkout begins with the Fregat upper stage for Arianespace's third Soyuz mission from French Guiana

ESA studies future of Europe's launch services

WATER WORLD
RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

WATER WORLD
Apple, Samsung lawyers spar in court over patents

The Daily iPad news app cuts staff

Microsoft confirms Surface tablet release

Quantifying the Environmental Impact of Structural Materials with B-PATH




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement