. | . |
Space travel: Bone aging in fast forward by Staff Writers Erlangen, Germany (SPX) Aug 01, 2022
Long periods in space damage bone structure irreparably in some cases and can make parts of the human skeleton age prematurely by up to 10 years. This is what a sport scientist at University of Erlangen-Nuremberg (FAU) has now discovered in conjunction with other researchers from Germany, Canada and the USA. Adapted training programs in conjunction with medication could provide better protection for astronauts on future space missions. The researchers have published their findings, which will now be also be used for treating rheumatic conditions in clinical practice, in the scientific journal Nature Scientific Reports. Will humans one day fly to Mars? Such a mission has been the subject of debate for several decades and does not depend simply on technical requirements. "If human beings are in space for three years at a time, we need to keep an eye on the health risks involved as well," says Dr. Anna-Maria Liphardt. "This already applies today for missions where astronauts are subject to zero-gravity conditions for usually no longer than six months."
After space travel: Bones age by up to ten years 14 men and three women were checked before their flights into space as well as six and twelve months after their return. The bone density and strength of the tibia and radius (shin bone and lower arm bone) were measured as well as the trabecular microstructure inside the bones. The bone turnover was also measured using biomarkers in their blood and urine. The results are worrying: Even twelve months after the end of their missions in space, nine out of the 17 astronauts had not completely recovered and had a reduction in bone strength and bone mineral density of up to 2 percent. "This may not sound like much, but it corresponds to age-related bone loss of at least a decade," explains Anna-Maria Liphardt. "For those affected, this means they will have to expect a much earlier onset of osteoporosis and susceptibility for fractures." In contrast to aging on Earth, the inner structure of astronauts' bones are affected more than the periosteum on the exterior surface. Some of the astronauts examined even have irreparable damage to the rod-shaped units or trabeculae. "We were able to demonstrate that regeneration is more difficult the longer the astronauts were in space," says Liphardt.
Training and medication must be adapted "People with higher activity levels have a higher bone turnover and the challenge is to keep up these activity levels during missions in space." Even though the ISS has various types of equipment such as a running machine, exercise bike and a weight training program for the astronauts to maintain their levels of activity, adapting the training programs during spaceflight to better meet the individual needs of the astronauts is crucial. Liphardt: "Developing new sports equipment that works in zero-gravity conditions and that does not take up much space is particularly challenging." Astronauts could also benefit from medication if it is taken during spaceflight in addition to exercise programs. This medication includes, for example, bisphosphonates, which are already successfully used for treating and preventing osteoporosis because they prevent bone degradation. "Bisphosphonates are already used by NASA, but we do not yet know enough about exactly how they work in microgravity," explains Liphardt. "We recommend conducting further systematic research into the combination of medical therapy and physical exercise."
Findings for clinical practice A new generation of high-resolution peripheral quantitative computer tomography (HR-pQCT) machines used during the study with the astronauts could be beneficial for these therapies. These machines are capable of producing high resolution images of the interior structure of bones. "An algorithm was used in older machines in order to generate the individual parameters of the microstructure from the images it produced," explains Liphardt. "This led to imprecise results, especially in trabecular changes to the bone." The Department of Medicine 3 at Universitatsklinikum Erlangen now has a latest generation HR-pQCT machine - which is set to benefit not astronauts but patients suffering from diseases of the muscular and skeletal systems.
Research Report:Incomplete recovery of bone strength and trabecular microarchitecture at the distal tibia 1 year after return from long duration spaceflight
How does reduced gravity affect astronauts' muscles and nerve responses Kyoto City, Japan (SPX) Jul 22, 2022 Among the many functions performed by skeletal muscles, an important one is maintaining our posture. If it weren't for these muscles, Earth's gravitational pull may make it difficult for us to stand and walk around. The group of muscles-mostly present in our limbs, back, and neck-which are responsible for maintaining our posture and allowing us to move against the force of gravity are rightly called 'anti-gravity' muscles. But what happens to these muscles when there is no gravity (or an "unloadin ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |