. 24/7 Space News .
STELLAR CHEMISTRY
Space-time metasurface makes light reflect only in one direction
by Staff Writers
Changchun, China (SPX) Dec 30, 2019

An illustration showing the concept of a space-time phase modulated metasurface consisting of resonating dielectric nanoantennas operating in reflection mode. A travelling phase modulation in sinusoidal form is superposed on the designed phase gradient along the horizontal direction.

Light propagation is usually reciprocal meaning that the trajectory of light travelling in one direction is identical from that in the opposite direction. Breaking reciprocity can make light propagate only in one direction.

Optical components that support such unidirectional flow of light, for example isolators and circulators, are indispensable building blocks in many modern laser and communication systems.

They are currently almost exclusively based on the magneto-optic effect, making the devices bulky and difficult for integration. It is in great demand to have a magnetic-free route to achieve nonreciprocal light propagation in many optical applications.

Recently, scientists developed a new type of optical metasurface with which phase modulation in both space and time is imposed on the reflected light, leading to different paths for the forward and backward light propagation. For the first time, nonreciprocal light propagation in free space was realized experimentally at optical frequencies with such an ultrathin component.

"This is the first optical metasurface with controllable ultrafast time-varying properties that is capable of breaking optical reciprocity without a bulky magnet," said Xingjie Ni, the Charles H. Fetter Assistant Professor in Department of Electrical Engineering at the Pennsylvania State University. The results were published this week in Light: Science and Applications.

The ultrathin metasurface consists of a silver back-reflector plate supporting block-shaped, silicon nanoantennas with large nonlinear Kerr index at near-infrared wavelengths around 860nm.

Heterodyne interference between two laser lines that are closely spaced in frequency was used to create efficient travelling-wave refractive index modulation upon the nanoantennas, which leads to ultrafast space-time phase modulation with unprecedentedly large temporal modulation frequency of about 2.8 THz.

This dynamic modulation technique exhibits great flexibility in tuning both spatial and temporal modulation frequencies. Completely asymmetric reflections in forward and backward light propagations were achieved experimentally with a wide bandwidth around 5.77 THz within a sub-wavelength interaction length of 150 nm.

Light reflected by the space-time metasurface acquires a momentum shift induced by the spatial phase gradient as well as a frequency shift arisen from the temporal modulation. It exhibits asymmetric photonic conversions between forward and backward reflections.

In addition, by exploiting unidirectional momentum transfer provided by the metasurface geometry, selective photonic conversions can be freely controlled by designing an undesired output state to lie in the forbidden, i.e. non-propagative, region.

This approach exhibits excellent flexibility in controlling light both in momentum and energy space. It will provide a new platform for exploring interesting physics arisen from time-dependent material properties and will open a new paradigm in the development of scalable, integratable, magnet-free nonreciprocal devices.

Research paper


Related Links
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
City College leads new photonics breakthrough
New York NY (SPX) Dec 16, 2019
A new approach to trapping light in artificial photonic materials by a City College of New York-led team could lead to a tremendous boost in the transfer speed of data online. Research into topological photonic metamaterials headed by City College physicist Alexander B. Khanikaev reveals that long-range interactions in the metamaterial changes the common behavior of light waves forcing them to localize in space. Further, the study shows that by controlling the degree of such interactions one can s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Facing industrial decline, Wales dreams of Silicon Valley

Beleaguered Boeing's Starliner returns early from failed mission

From take off to landing, NASA and Boeing work together to launch Commercial Crew

Astronauts "Train Like You Fly" in Boeing Starliner Simulations

STELLAR CHEMISTRY
SpaceX launches JCSAT 18 Kacific 1 communication satellite

Equipment installation for Angara Launch Pad at Russia's Vostochny to start Sunday

Scaling up for the next generation of rocket technology Down Under

Jeff Bezos's Blue Origin rocket makes 12th test flight

STELLAR CHEMISTRY
Mars 2020 Rover Completes Its First Drive

Lockheed Martin delivers Mars 2020 rover aeroshell to launch site

Two rovers to toll on Mars Again in 2020

Scientists map a planet's global wind patterns for the first time, and it's not Earth

STELLAR CHEMISTRY
China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

STELLAR CHEMISTRY
Iridium Continues GMDSS Readiness with Announcement of Launch Partners

Nilesat-301 satellite to be built by Thales Alenia Space

SpaceChain sends blockchain tech to ISS

SpaceChain sends blockchain tech to ISS for Fintech market

STELLAR CHEMISTRY
Solving the challenges of long duration space flight with 3D Printing

New nano-barrier for composites could strengthen spacecraft payloads

Calling radio amateurs: help find OPS-SAT!

New laser technique images quantum world in a trillionth of a second

STELLAR CHEMISTRY
Europe's exoplanet hunter blasts off from Earth

Europe's exoplanet hunter reaches orbit around Earth

CHEOPS space telescope to investigate extrasolar planets

Short-lived light sources discovered in the sky

STELLAR CHEMISTRY
NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.