. | . |
Space dragons: Researchers observe energy consumption in quasars by Staff Writers Hefei, China (SPX) Sep 05, 2019
Quasars are the Universe's brightest beacons; shining with magnitudes more luminosity than entire galaxies and the stars they contain. In the center of this light, at the heart of a quasar, researchers think, is an all-consuming black hole. Researchers, for the first time, have observed the accelerated rate at which eight quasars consume interstellar fuel to feed their black holes. "As the most luminous steady beacons in the Universe, quasars are believed to be powered by an accretion disk around the central black hole," said Hongyan Zhou, paper author and faculty member at the University of Science and Technology of China. Zhou is also affiliated with the SOA Key Laboratory for Polar Science in the Polar Research Institute of China. Zhou compared the black hole to a starved dragon. "The supermassive black hole in the center of the quasar gobbles up an enormous amount of nearby materials, which glare and shine when they constitute an accretion disk before finally sliding down in the black hole," Zhou said. "Outside the accretion disk, materials are continuously pumped from all directions to the center by gravity to feed the black hole with an endless appetite." An accretion disk is a spiraling mass of material centered around a monumental source of gravity consuming interstellar material--what researchers have theorized is a black hole. Much like how water empties out of a bathtub, the material spins much faster the closer it gets to the drain. "We think this paradigm of black holes at the center of quasars is accurate, but fundamental questions remain unanswered: Is the accretion disk fueled with external mass? If so, how?" Zhou said. The interstellar gas cannot be observed directly, as its radiation signature is overwhelmed by the accretion disk's brightness. Instead, researchers monitor for gas falling into the accretion disk that may pass through their line of sight. The gas makes a kind of eclipse between Earth and the accretion disk, casting lines onto the disk's spectrum of radiation. The researchers used the Doppler effect to measure these lines and observe the velocity of gas feeding into the disk, toward the black hole. A classic Doppler effect example is how the pitch of a police siren drops once it passes. Astronomers call this passing pitch the "redshift" when measuring how quickly gases move toward an object away from Earth. Zhou and his team measured velocities of 5,000 kilometers per second. For comparison, a passenger jet travels at less than a thousand kilometers per hour. "Such a high velocity can only be accelerated by the strong gravity of the central black hole," Zhou said. "It's comparable to how, in a meteor shower, the closer the meteors get to the ground, the faster they fall." In the quasars Zhou observed, the accretion disks were supplied with fast-falling external mass from surrounding space. The disks themselves then create inflows to the black hole. Next, Zhou and his team plan to investigate exactly how these quasar "dragons" organize and differentiate the external mass from accretion disks to fuel inflows. According to Zhou, elucidation of this process could better inform the understanding of how quasars form, how long they last and when and how they end. They published their results on Sept 4th, Nature.
Temperatures of 800 billion degrees in the cosmic kitchen Munich, Germany (SPX) Aug 23, 2019 When two neutron stars collide, the matter at their core enters extreme states. An international research team has now studied the properties of matter compressed in such collisions. The HADES long-term experiment, involving more than 110 scientists, has been investigating forms of cosmic matter since 1994. With the investigation of electromagnetic radiation arising when stars collide, the team has now focused attention on the hot, dense interaction zone between two merging neutron stars. Co ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |