. 24/7 Space News .
ROCKET SCIENCE
SpaceX astronaut launch: here's the rocket science it must get right
by Gareth Dorrian and Ian Whittaker
Birmingham UK (The Conversation) May 28, 2020

Illustration of Crew Dragon at final docking.

Two NASA astronauts, Robert Behnken and Douglas Hurley, will make history by travelling to the International Space Station in a privately funded spacecraft, SpaceX's Falcon 9 rocket and Crew Dragon capsule. But the launch, which was due to take place on May 27, has been aborted due to bad weather, and will instead take place on May 30 at 3:22 pm EDT.

The astronauts will take off lying on their backs in the seats, and facing in the direction of travel to reduce the stress of high acceleration on their bodies. Once launched from Kennedy Space Centre, the spacecraft will travel out over the Atlantic, turning to travel in a direction that matches the ISS orbit.

With the first rocket section separating at just over two minutes, the main dragon capsule is then likely to separate from the second stage burn roughly an hour later and continue on its journey. All being well, the Dragon spacecraft will rendezvous about 24 hours after launch.

Space mission launches and landings are the most critical parts. However, Space X has conducted many tests, including 27 drops of the parachute landing system. It has also managed an emergency separation of the Dragon capsule from the rocket. In the event of a failed rocket launch, eight engines would lift the capsule containing the astronauts up into the air and away from the rocket, with parachutes eventually helping it to land. The Falcon 9 rocket has made 83 successful launches.

Docking and return
The space station has an orbital velocity of 7.7km per second. The Earth's rotation carries launch sites under a straight flight path of the ISS, with each instance providing a "launch window".

To intercept the ISS, the capsule must match the station's speed, altitude and inclination, and it must do it at the correct time such that the two spacecraft find themselves in close proximity to each other. The difference in velocity between the ISS and the Dragon capsule must then be near to zero at the point where the orbits of the two spacecraft intersect.

Once these conditions are met, the Dragon capsule must manoeuvre to the ISS docking port, using a series of small control thrusters arranged around the spacecraft. This is due to be done automatically by a computer, however the astronauts can control this manoeuvre manually if needed.

As you can see in the figure below, manoeuvring involves "translation control" as indicated by green arrows - moving left/right, up/down, forward/back. The yellow arrows show "attitude control" - rolling clockwise/anti-clockwise, pitching up/down, and yawing left/right.

This is complicated by Newton's first law of motion - that any object at rest or in motion will continue to be so unless acted upon by an external force. That means any manoeuvre, such as a roll to the right, will continue indefinitely in the absence of air resistance to provide an external force until it is counteracted by firing thrusters in the opposite direction.

So now that you have a grasp of orbital manoeuvring, why not have a go yourself? This simulator, provided by Space X, allows you to try and pilot the Dragon capsule to the ISS docking port.

The astronauts will return to Earth when a new set are ready to take their place, or at NASA's discretion. NASA are already planning the first fully operational flight of crew Dragon, with four astronauts, although a launch date for that has not yet been announced and will undoubtedly depend on the outcome of this demonstration flight.

New era for spaceflight
The launch puts SpaceX firmly ahead of the other commercial ventures looking at providing crewed space launches. This includes both Boeing's Starliner, which first launched last year but was uncrewed, and Sierra Nevada's Dream Chaser which is planned to be tested with cargo during a trip to the ISS next year.

The ability of the commercial sector to send astronauts to the ISS is an important step toward further human exploration, including establishing a human presence at the Moon, and ultimately, Mars.

With companies competing, however, an open question remains whether safety could at some point be compromised to gain a commercial edge. There is no suggestion this has happened so far, but any crewed mission which failed due to a fault stemming from economic concerns would have serious legal ramifications.

In a similar way to modern aircraft legislation, a set of space safety standards and regulations will need to be put in place sooner rather than later. For commercial lunar and beyond missions we also have to ensure that any spacecraft does not contaminate the location they are visiting with germs from Earth.

With more nations and companies developing plans for lunar missions, there are obvious advantages in international cooperation and finding cost efficient launch methods. This is not least because it's not as dependent on the whim of elected governments for direction, which can change completely from one administration to the next.

So for us scientists looking to expand our knowledge of space, it is a very exciting moment.


Related Links
Commercial Crew Program
Rocket Science News at Space-Travel.Com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROCKET SCIENCE
First test of Virgin Orbit rocket fails to accomplish goal
Los Angeles (AFP) May 25, 2020
The first test launch of a rocket that is released from a jumbo jet at 35,000 feet and then propels itself into orbit to deploy a satellite failed on Monday, the Virgin Orbit company said. "The mission terminated shortly into the flight. Cosmic Girl and our flight crew are safe and returning to base," Virgin Orbit's Twitter account reported as the test was underway off the coast of California. The plane released the rocket cleanly, but the latter developed trouble of unknown origin after ignitin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
No SpaceX T-shirts for tourists at Cape Canaveral

Airbus wins ESA contract to construct third European Service Module for NASA's Orion spacecraft

NASA seeking US Citizens for social isolation study for Moon and Mars missions

Barrett, Raymond speak with U.S. astronaut ahead of historic launch

ROCKET SCIENCE
Crew Dragon DEMO-2 mission ready for new era for human spaceflight

First test of Virgin Orbit rocket fails to accomplish goal

NASA astronauts will test new SpaceX capsule, execute spacewalks

Trump to attend SpaceX launch; As NASA says go for May 27 launch

ROCKET SCIENCE
Air deliveries bring NASA's Perseverance Mars rover closer to launch

MAVEN maps electric currents around Mars that are fundamental to atmospheric loss

The detective aboard NASA's Perseverance Rover

NASA's Curiosity Rover Finds Clues to Chilly Ancient Mars Buried in Rocks

ROCKET SCIENCE
China space program targets July launch for Mars mission

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

ROCKET SCIENCE
New UK-based space team launches to boost sector and economy

Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

Study explores space's impact on our daily lives

Strings of pearls in the night sky - the Starlink satellite project

ROCKET SCIENCE
Machine-learning tool could help develop tougher materials

SpaceChain invests in Core Semiconductor to drive open Direct Satellite-to-Devices Communication

Solving the space junk problem

New Army 3-D printing study shows promise for predictive maintenance

ROCKET SCIENCE
Terrestrial bacteria can grow on nutrients from space

Astronomers create cloud atlas for hot, Jupiter-like exoplanets

Galactic crash may have triggered Solar System formation

The bold plan to see continents and oceans on another earth

ROCKET SCIENCE
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.