. | . |
South Africa's MeerKAT peers deep into the Universe by Staff Writers Cape Town, South Africa (SPX) Dec 18, 2019
Look at this new radio image covered with dots, each of which is a distant galaxy! The brightest spots are galaxies that are powered by supermassive black holes and shine bright in radio light. But what makes this image special are the numerous faint dots filling the sky. These are distant galaxies like our own that have never been observed in radio light before. To learn about the star-formation history of the universe, we need to look back in time. Galaxies throughout the universe have been forming stars for the past 13 billion years. But most stars were born between 8 and 11 billion years ago, during an era called "cosmic noon." It has been a challenge for astronomers to study the faint light coming from this era. Optical telescopes, like SALT in Sutherland, can see very distant galaxies, but new stars are largely hidden inside dusty clouds of gas. Radio telescopes can see through the dust and observe the rare, bright "starburst" galaxies, but until now have not been sensitive enough to detect the signals from distant Milky Way-like galaxies that are responsible for most of the star formation in the universe. An international team of astronomers, using the South African Radio Astronomy Observatory (SARAO) MeerKAT telescope near Carnarvon in the Northern Cape, recently made the first radio observation sensitive enough to reveal these galaxies. "To make this image, we selected an area in the Southern Sky that contains no strong radio sources whose glare could blind a sensitive observation," said Tom Mauch of SARAO in Cape Town, who led the team that published their results in The Astrophysical Journal. The team used the 64 MeerKAT dishes to observe this area for a total of 130 hours. The resulting image shows a region of the sky that is comparable in area to five full Moons, containing tens of thousands of galaxies. "Because radio waves travel at the speed of light, this image is a time machine that samples star formation in these distant galaxies over billions of years," explained co-author James Condon of the National Radio Astronomy Observatory in the USA. "Because only short-lived stars that are less than 30 million years old send out radio waves, we know that the image is not contaminated by old stars. The radio light we see from each galaxy is therefore proportional to its star-forming rate at that moment in time." The astronomers want to use this image to learn more about star formation in the entire universe. "These first results indicate that the star-formation rate around cosmic noon is even higher than was originally expected," said Allison Matthews, a PhD student at the University of Virginia. "Previous images could only detect the tip of the iceberg, the rare and luminous galaxies that produced only a small fraction of the stars in the universe. What we see now is the complete picture: these faint dots are the galaxies that formed most of the stars in the universe." "MeerKAT is the best radio array in the world for studies like this one because it is the first to use such a large number of extremely low-noise clear-aperture dishes," explained SARAO Chief Technologist Justin Jonas. As a result, the MeerKAT image (nicknamed "DEEP2") is more sensitive to distant star-forming galaxies than any previous view of the radio sky.
Research Report: "The 1.28 GHz MeerKAT DEEP2 Image"
Swiss space telescope CHEOPS launch set for 17 December Bern, Switzerland (SPX) Dec 06, 2019 The space telescope CHEOPS is scheduled to begin its journey into space on Tuesday, December 17th, onboard a Soyuz rocket from the European Space Agency (ESA) in Kourou, French Guiana. CHEOPS is a joint mission of ESA and Switzerland, led by the University of Bern, in collaboration with the University of Geneva. CHEOPS (short for CHaracterising ExOPlanet Satellite) consists of a space telescope developed and assembled by the University of Bern, in collaboration with the University of Geneva (UNIGE ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |