Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Solar storm protection
by Tracey Bryant
Newark, DE (SPX) Jul 13, 2012


NASA's Solar Dynamics Observatory (SDO) captured this M5.6 class solar flare on July 2, 2012, at 6:52 a.m. EDT. The flare came from a large sunspot called AR1515 in the sun's southern hemisphere. The flare caused brief radio interference over Europe. Image courtesy NASA/SDO.

Massive explosions on the sun unleash radiation that could kill astronauts in space. Now, researchers from the U.S. and South Korea have developed a warning system capable of forecasting the radiation from these violent solar storms nearly three hours (166 minutes) in advance, giving astronauts, as well as air crews flying over Earth's polar regions, time to take protective action.

Physicists from the University of Delaware and from Chungnam National University and Hanyang University developed the system and report on it in Space Weather: The International Journal of Research and Applications, published by the American Geophysical Union. The research article also is selected as an "Editor's Highlight."

Prof. John Bieber at UD's Bartol Research Institute, based in the Department of Physics and Astronomy, directed the scientific project. The article's lead author is Su Yeon Oh, a postdoctoral researcher from Chungnam National University, who worked with Bieber on the project at UD.

"Traveling nearly at the speed of light, it takes just 10 minutes for the first particles ejected from a solar storm to reach Earth," Bieber says. These sun storms can cover thousands of miles on the sun, like a wave of exploding hydrogen bombs.

The researchers used data collected by two neutron monitors installed years ago at the South Pole by UD - one inside and one outside the Amundsen-Scott South Pole Station - to determine the intensity of the high-energy, fast-moving particles that arrive to Earth first from solar storms. These particles can carry energies over 500 megaelectron volts (MeV) - that's over 500 million electron volts.

By examining the properties of these first-arriving particles, the scientists can make useful predictions about the slower-moving, yet more dangerous particles to follow.

"These slower-moving particles are more dangerous because there are so many more of them. That's where the danger lies," Bieber explains.

When these firstcomer, positively charged particles, or protons, hit an air molecule in Earth's atmosphere, they blast apart into tiny pieces, which, in turn, slam into other air molecules, and so on. Neutrons, neutrally charged particles, are produced as part of this cascading event.

From measurements of the neutrons produced in past solar events taken by UD's neutron monitors at South Pole, the scientists calculated the energy of the first-arriving protons and, from that, estimated the intensity of the later-arriving, more dangerous particles.

The authors compared their predictions for 12 solar events against observations made by geosynchronous satellites, achieving good agreement for protons with energies higher than 40 to 80 megaelectron (million) volts.

Depending on the protons' energy, the system provides a warning time up to 166 minutes. That would give astronauts on deep space flights time to seek out an armored area in their spacecraft, Bieber says, and pilots flying in Earth's polar regions, where the planet's protective magnetic field is weaker, time to reduce their altitude.

How great is the risk?
The sun is now moving into a peak period of solar storm activity, which generally occurs every 11 years. The solar storms, flares and coronal mass ejections threaten the electrical system on Earth in addition to some astronauts and fliers.

"If you're in a plane flying over the poles, there is an increased radiation exposure comparable to having an extra chest X-ray you weren't planning on," says Bieber. "However, if you're an astronaut on the way to the moon or Mars, it's a big problem. It could kill you."

Most astronauts have flown in low Earth orbit in recent years, but if we go back to the moon or decide to send humans to Mars, we need to think about these things, Bieber says. According to him, some of the Apollo astronauts were just lucky.

"Somehow they got these moon launches between big solar flares that would have killed them right then and there," Bieber notes.

The study's authors also included John Clem, Paul Evenson and R. Pyle from UD; Yu Yi from Chungnam University; and Y.-K. Kim, Hanyang University. The research was funded by the National Research Foundation of Korea through the South Korean government and by the U.S. National Science Foundation, NASA and the NASA/EPSCoR program.

.


Related Links
Department of Physics and Astronomy at University of Delaware
Bartol Research Institute
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
HI-C sounding rocket mission has finest mirrors ever made
Greenbelt MD (SPX) Jul 13, 2012
On July 11, NASA scientists will launch into space the highest resolution solar telescope ever to observe the solar corona, the million degree outer solar atmosphere. The instrument, called HI-C for High Resolution Coronal Imager, will fly aboard a Black Brant sounding rocket to be launched from the White Sands Missile Range in New Mexico. The mission will have just 620 seconds for its fli ... read more


SOLAR SCIENCE
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

SOLAR SCIENCE
NASA Mars images 'next best thing to being there'

Life's molecules could lie within reach of Mars Curiosity rover

Final Six-Member Crew Selected for Mars Food Mission

Opportunity Celebratres 3,000 Martian Days of Operation on the Surface of Mars!

SOLAR SCIENCE
Nose Landing Gear Tested for Dream Chaser Spacecraft

Virgin Galactic Reveals Privately Funded Satellite Launcher and Confirms SpaceShipTwo Poised for Powered Flight

Branson to take kids on first space tourist trip

Space for dessert?

SOLAR SCIENCE
Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

China set to launch bigger space program

SOLAR SCIENCE
Science, Maintenance for Station Crew; Launch Preps for New Crew Members

ESA astronaut Andre Kuipers returns to Earth

First Annual ISS Research and Development Conference in Review

Three astronauts land on Earth from ISS in Russian capsule

SOLAR SCIENCE
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

SOLAR SCIENCE
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

SOLAR SCIENCE
The eyes have it for disabled gamers

Raytheon to pursue USAF deployable air traffic radar program

Raytheon's MTS-B delivers leading-edge surveillance technology to USAF

The Day Information Went Global




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement