![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Tokyo, Japan (SPX) Nov 22, 2017
Using more than half a century of observations, Japanese astronomers have discovered that the microwaves coming from the Sun at the minimums of the past five solar cycles have been the same each time, despite large differences in the maximums of the cycles. In Japan, continuous four-frequency solar microwave observations (1, 2, 3.75 and 9.4 GHz) began in 1957 at the Toyokawa Branch of the Research Institute of Atmospherics, Nagoya University. In 1994 the telescopes were relocated to NAOJ Nobeyama Campus, where they have continued observations up to the present. A research group led by Masumi Shimojo (Assistant Professor at NAOJ Chile Observatory), including members from Nagoya University, Kyoto University, and Ibaraki University, analyzed the more than 60 years of solar microwave data from these telescopes. They found that microwave intensities and spectra at the minimums of the latest five cycles were the same every time. In contrast, during the periods of maximum solar activity, both the intensity and spectrum varied from cycle to cycle. Masumi Shimojo explains that, "Other than sunspot observations, uniform long-term observations are rare in solar astronomy. It is very meaningful to discover a trend extending beyond a single solar cycle. This is an important step in understanding the creation and amplification of solar magnetic fields, which generate sunspots and other solar activity." The Sun goes through a cycle of active and quiet periods approximately once every 11 years. This "solar cycle" is often associated with the number of sunspots, but there are other types of solar activity as well. So simply counting the number of sunspots is insufficient to understand the solar activity conditions. Microwaves are another indicator of solar activity. Microwaves have the advantage that, unlike sunspots, they can be observed on cloudy days. Also, monitoring multiple frequencies of microwaves makes it possible to calculate the relative strength at each frequency (this is called the spectrum).
![]() Greenbelt MD (SPX) Nov 20, 2017 When our Sun erupts with giant explosions - such as bursts of radiation called solar flares - we know they can affect space throughout the solar system as well as near Earth. But monitoring their effects requires having observatories in many places with many perspectives, much the way weather sensors all over Earth can help us monitor what's happening with a terrestrial storm. By using mul ... read more Related Links National Institutes of Natural Sciences Solar Science News at SpaceDaily
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |