. 24/7 Space News .
SOLAR SCIENCE
Solar activity reconstructed over a millennium
by Staff Writers
Zurich, Switzerland (SPX) Jan 20, 2021

Solar activity over the last 1000 years (blue, with error interval in white), sunspot records (red curve) going back less than 400 years. The background shows a typical eleven-year cycle of the sun.

What goes on in the sun can only be observed indirectly. Sunspots, for instance, reveal the degree of solar activity - the more sunspots are visible on the surface of the sun, the more active is our central star deep inside. Even though sunspots have been known since antiquity, they have only been documented in detail since the invention of the telescope around 400 years ago.

Thanks to that, we now know that the number of spots varies in regular eleven-year cycles and that, moreover, there are long-lasting periods of strong and weak solar activity, which is also reflected in the climate on Earth.

However, how solar activity developed before the start of systematic records has so far been difficult to reconstruct. An international research team led by Hans-Arno Synal and Lukas Wacker of the Laboratory of Ion Beam Physics at ETH, which included the Max Planck Institute for Solar System Research in Gottingen and Lund University in Sweden, has now traced back the sun's eleven-year cycle all the way to the year 969 using measurements of the concentration of radioactive carbon in tree rings.

At the same time, the researchers have thus created an important database for more precise age determination using the C14 method. Their results were recently published in the scientific journal Nature Geoscience.

Solar activity from tree rings
To reconstruct solar activity over a millennium with an extremely good time resolution of just one year, the researchers used tree-ring archives from England and Switzerland. In those tree rings, whose ages can be precisely determined by counting the rings, there is a tiny fraction of radioactive carbon C14, with only one out of every 1000 billion atoms being radioactive.

From the known half-life of the C14 isotope - around 5700 years - one can then deduce the concentration of radioactive carbon present in the atmosphere when the growth ring was formed. As radioactive carbon is mainly produced by cosmic particles, which in turn are kept away from the Earth to a greater or lesser extent by the magnetic field of the sun - the more active the sun, the better it shields the Earth - it is possible to deduce solar activity from a change in the concentration of C14 in the atmosphere.

Better results through modern detection techniques
Precise measurements of a change in that already very small concentration, however, resemble the search for a grain of dust on a needle in a huge haystack. "The only measurements of that kind were made in the 80's and 90's", says Lukas Wacker, "but only for the last 400 years and using the extremely laborious counting method".

In that method, radioactive decay events of C14 in a sample are directly counted using a Geiger counter, which requires a relatively large amount of material and, owing to the long half-life of C14, even more time. "Using modern accelerator mass spectrometry we were now able to measure the C14 concentration to within 0.1 percent in just a few hours with tree-ring samples that were a thousand times smaller", adds PhD student Nicolas Brehm, who was responsible for those analyses.

In accelerator mass spectrometry, C14 and C12 atoms (the "normal", non-radioactive carbon; C14, by contrast, contains two additional neutrons in its nucleus) of the tree material are first electrically charged and then accelerated by an electric potential of several thousand volts, after which they are sent through a magnetic field.

In that magnetic field the two carbon isotopes, which have different masses, are deflected to different degrees and can thus be counted separately. To eventually obtain the desired information on solar activity from that raw data, the researchers have to perform some intricate statistical analysis on it and further process the results using computer models.

Regular eleven-year cycle over a millennium
This procedure enabled the researchers to seamlessly reconstruct solar activity from 969 to 1933. From that reconstruction they could confirm the regularity of the eleven-year cycle as well as the fact that the amplitude of that cycle (by how much the solar activity goes up and down) is also smaller during long-lasting solar minima. Such insights are important for a better understanding of the internal dynamics of the sun.

The measurement results also allowed a confirmation of the solar energetic proton event of 993. In such an event, highly accelerated protons that reach the Earth during a solar flare cause a slight overproduction of C14. Moreover, the research team also found evidence of two further, as yet unknown events in 1052 and 1279. This could indicate that such events - which can severely disturb electronic circuits on Earth and in satellites - happen more frequently than previously thought.

More precise dating by the C14 method
As tree ring archives exist for the past 14'000 years, in the near future the researchers want to use their method to determine the yearly C14 concentrations all the way back to the end of the last ice age. As a kind of "extra", the data in the new study can be used for dating organic material much more precisely using the C14 method and have already been included in the latest edition of the internationally recognized radio carbon calibration curves (IntCal). "ETH had not been involved in that reference database before", says Lukas Wacker, "but with our new results we have now contributed a third of the measurements in one go."

Research paper


Related Links
ETH Zurich
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
NASA, Poland to build instrument to study interplanetary space
Greenbelt MD (SPX) Jan 15, 2021
NASA and the Ministry of Science and Higher Education of the Republic of Poland have agreed to cooperate on a NASA heliophysics mission, the Interstellar Mapping and Acceleration Probe (IMAP). The agreement, signed Dec. 30, 2020, will allow the Space Research Center of the Polish Academy of Sciences (CBK PAN) to design and build one of IMAP's 10 instruments - the Global Solar Wind Structure (GLOWS) instrument - as well as provide ground support and personnel necessary to support the instrument and the I ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Prepping for a spacewalk to install Colka on ISS external hull

Cultivating plant growth in space

NASA Extends Exploration for Two Planetary Science Missions

European Gateway module to be built in France as Thomas Pesquet readies for second spaceflight

SOLAR SCIENCE
Virgin Orbit targets Sunday for LauncherOne mission from California

Cargo Dragon undocks from Station and heads for splashdown

Exotrail aims for more in orbit space mobility

China makes progress in developing rocket engines for space missions

SOLAR SCIENCE
Curiosity Rover reaches its 3,000th day on Mars

Frosty scenes in martian summer

Seven things to know about the NASA rover about to land on Mars

China Focus: 400 mln km within 163 days, China's Mars probe heads for red planet

SOLAR SCIENCE
Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

SOLAR SCIENCE
France to Invest $121.5Mln in Space Projects Over Next 2 Years, Macron Says

NASA, FAA Partnership Bolsters American Commercial Space Activities

Orbit Logic Leverages Blockchain for Constellation Communication over Dynamic Networks

Airbus signs multi-satellite contract with Intelsat for OneSat flexible satellites

SOLAR SCIENCE
Saffire Ignites New Discoveries in Space

Physicists propose a new theory to explain one dimensional quantum liquids formation

Seeing in a flash

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

SOLAR SCIENCE
Simulating evolution to understand a hidden switch

Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars

Astronomers find evidence for planets shrinking over billions of years

SOLAR SCIENCE
Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.