![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Aug 24, 2021
The Sun has a new neighbor that was hiding in plain twilight. An asteroid that orbits the Sun in just 113 days-the shortest known orbital period for an asteroid and second shortest for any object in our Solar System after Mercury-was discovered by Carnegie's Scott S. Sheppard in evening twilight images taken by Brown University's Ian Dell'Antonio and Shenming Fu. The newfound asteroid, called 2021 PH27, is about 1 kilometer in size and is on an unstable orbit that crosses that of Mercury and Venus. This means that within a few million years it will likely be destroyed in a collision with one of these planets or the Sun, or it will be ejected from its current position. Studying objects like this can help scientists understand where asteroids originated and the forces that shaped our Solar System's architecture. "Most likely 2021 PH27 was dislodged from the Main Asteroid Belt between Jupiter and Mars and the gravity of the inner planets shaped its orbit into its current configuration," Sheppard said. "Although, based on its large angle of inclination of 32 degrees, it is possible that 2021 PH27 is an extinct comet from the outer Solar System that ventured too close to one of the planets as the path of its voyage brought it into proximity with the inner Solar System." Because 2021 PH27 is so close to the Sun's massive gravitational field, it experiences the largest General Relativistic effects of any known Solar System object. This is seen in a slight angular deviation in its elliptical orbit over time, a movement called precession, which occurs at about one arcminute per century. Observation of Mercury's precession puzzled scientists until Einstein's Theory of General Relativity explained its orbital adjustments over time. 2021 PH27's precession is even faster than Mercury's. "2021 PH27 gets so close to the Sun that its surface temperature gets to around 900 degrees Fahrenheit at closest approach, hot enough to melt lead," Sheppard said. Future observations of this object will shed more light on its origins. Comparing 2021 PH27 to objects that orbit beyond Earth will improve researchers' knowledge of its composition and the materials that enable its survival under these extreme conditions. An object like 2021 PH27 experiences tremendous thermal and internal stresses due to its proximity to the Sun. A census of asteroids near and inside of Earth's orbit is crucial for identifying those that could potentially impact our planet, but are difficult to spot because they approach Earth during daylight. These types of asteroids are not easily detected by most surveys, which usually observe at night. The asteroid will soon pass behind the Sun and be unobservable from Earth until early next year, at which time observers will be able to refine its orbit to the precision needed to give it an official name. The only efficient method for spotting asteroids that move around the Sun in orbits closer than Earth's own is to take images as the Sun sets or rises, which Dell'Antonio and Fu did with the Dark Energy Camera on the National Science Foundation's Blanco 4-meter telescope in Chile. Their main research is part of the Local Volume Complete Cluster Survey, which is observing most of the massive galaxy clusters in the nearby universe with increased detail. In collaboration with Sheppard, Dell'Antonio and Fu switched from focusing on some of the most distant objects in the universe to some of the nearest, using the first few minutes of evening twilight on August 13 to take images in which Sheppard was able to find 2021 PH27 a few hours later. "Because the object was already in the Sun's glare and moving more toward it, it was imperative that we determine the object's orbit before it was lost behind our central star," explained Dave Tholen of the University of Hawaii, who measured the fast-moving asteroid's position on the sky and predicted where it would be the night after the initial discovery. "I surmised that for an asteroid this size to remain hidden for so long, it must have an orbit that keeps it so near to the Sun that it is difficult to detect from Earth's position." Additional images were obtained the following night using the Magellan telescopes at Carnegie's Las Campanas Observatory in Chile as well as again with NSF's 4-meter Blanco telescope. A third night of follow-up observations were needed to determine the new asteroid's orbit before it was lost, but cloudy weather in Chile elicited a trek around the world to South Africa thanks to the activation of the Las Cumbres Observatory's extensive network of global 1-meter telescopes. "Although telescope time is very precious, the international nature and love of the unknown makes astronomers very willing to override their own science and observations to follow-up new interesting discoveries like this," said Sheppard. "We are so grateful for all of our collaborators who enabled us to act quickly on this discovery."
![]() ![]() Fizzing sodium could explain Asteroid Phaethon's comet-like activity Pasadena CA (JPL) Aug 17, 2021 As a comet zooms through the inner solar system, the Sun heats it, causing ices below the surface to vaporize into space. The venting vapor dislodges dust and rock, and the gas creates a bright tail that can extend millions of miles from the nucleus like an ethereal veil. Whereas comets contain lots of different ices, asteroids are mainly rock and not known for producing such majestic displays. But a new study examines how near-Earth asteroid Phaethon may in fact exhibit cometlike activity, despit ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |