24/7 Space News
ENERGY TECH
Soft, Stretchable Jelly Batteries Inspired by Electric Eels
illustration only
Soft, Stretchable Jelly Batteries Inspired by Electric Eels
by Sophie Jenkins
London, UK (SPX) Jul 18, 2024

Researchers at the University of Cambridge have developed innovative, stretchable "jelly batteries" with potential applications in wearable devices, soft robotics, and even brain implants for drug delivery and epilepsy treatment.

Inspired by electric eels, which use modified muscle cells known as electrocytes to generate electric shocks, the Cambridge team created these batteries with a similar layered structure. This design enables them to deliver an electric current effectively.

The new jelly batteries can stretch over ten times their original length without losing conductivity, marking the first successful combination of such high stretchability and conductivity in a single material. The findings have been published in the journal Science Advances.

These batteries are made from hydrogels, which are 3D polymer networks containing more than 60% water. The polymers are interconnected by reversible interactions that control the material's mechanical properties.

Stephen O'Neill, the first author from Cambridge's Yusuf Hamied Department of Chemistry, highlighted the challenge in creating a material that is both stretchable and conductive. "It's difficult to design a material that is both highly stretchable and highly conductive, since those two properties are normally at odds with one another," he said. "Typically, conductivity decreases when a material is stretched."

Co-author Dr Jade McCune from the Department of Chemistry explained, "Normally, hydrogels are made of polymers that have a neutral charge, but if we charge them, they can become conductive. And by changing the salt component of each gel, we can make them sticky and squish them together in multiple layers, so we can build up a larger energy potential."

Unlike conventional electronics, which rely on rigid materials and electron charge carriers, these jelly batteries use ions to carry the charge, similar to electric eels.

The hydrogels' strong adhesion is due to reversible bonds formed between layers using barrel-shaped molecules called cucurbiturils, which act like molecular handcuffs. This strong adhesion ensures that the jelly batteries can stretch without the layers separating and without losing conductivity.

Professor Oren Scherman, Director of the Melville Laboratory for Polymer Synthesis, who led the research with Professor George Malliaras from the Department of Engineering, emphasized the biomedical potential of these hydrogels. "We can customise the mechanical properties of the hydrogels so they match human tissue," he said. "Since they contain no rigid components such as metal, a hydrogel implant would be much less likely to be rejected by the body or cause the build-up of scar tissue."

In addition to their flexibility, the hydrogels are tough and can withstand squashing without permanent deformation. They also possess self-healing properties.

Future research will focus on testing these hydrogels in living organisms to evaluate their medical application potential.

Research Report:Highly Stretchable Dynamic Hydrogels for Soft Multilayer Electronics

Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Researchers utilize recycled silicon anodes to enhance lithium-ion battery efficiency
Sydney, Australia (SPX) Jul 17, 2024
Researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences have crafted low-cost micro-sized silicon anodes from recycled photovoltaic waste, thanks to an innovative electrolyte design. Their important research, published in Nature Sustainability on July 16, paves the way for more sustainable, cost-effective, and high-energy-density batteries, potentially revolutionizing energy storage systems for electric vehicles and renewable energy ... read more

ENERGY TECH
Juice's Historic Lunar-Earth Flyby: Key Details

Real-life Spacesuit Innovation Recycles Urine into Drinking Water

Leidos secures $476M NASA contract for ISS and Artemis Cargo Support

MIT scientists develop way to toughen up 'good' bacteria, extend shelf life

ENERGY TECH
NASA Introduces Low-Cost Hybrid Rocket Motor Testbed

SpaceX Falcon 9 rocket experiences rare failure

Virgin Galactic Unveils New Spaceship Manufacturing Facility in Arizona

Rocket Lab Prepares for Capella Space Mission Launch from New Zealand

ENERGY TECH
Voyagers of Mars: The First CHAPEA Crew's Yearlong Journey

Mars Likely Experienced Cold and Icy Conditions, Study Suggests

Martian Atmosphere Unveiled Through Innovative Use of Existing Technology

Europe's Earth Return Orbiter Advances to Next Development Stage

ENERGY TECH
Shenzhou XVII Crew Shares Post-Mission Insights with Media

Shenzhou XVIII Crew Successfully Completes Second Spacewalk

Chinese Scientists Develop Novel Rosa Roxburghii Varieties via Space Breeding

Shenzhou 18 Crew to Conduct Second Extravehicular Activities

ENERGY TECH
Booz Allen Invests in Quindar to Enhance Satellite Automation

Maritime Satellite Communications Market Expands with Rising NGSO Solutions

SpaceX Successfully Launches Turkey's First Home-Grown Communications Satellite

Ovzon 3 Satellite Commences Commercial Service

ENERGY TECH
India's Infosys beats profit estimates as client spending rises

Caught in the actinium

Spain's Aragon, Europe's new cloud storage oasis

EU, Serbia set to ink 'critical raw materials' deal

ENERGY TECH
NASA's Webb Explores Atmospheric Differences on Exoplanet WASP-39 b

Scorching Storms Unveiled on Nearby Brown Dwarfs

BAE Systems to Advance Stable Optical Technology for NASA's HWO Mission

New Proposal Redefines Planetary Criteria Beyond Our Solar System

ENERGY TECH
NASA Evaluates Electrical Components for Europa Clipper Mission

Subaru Telescope Discovers New Objects Beyond the Kuiper Belt

NASA's Juno Observes Lava Lakes on Jupiter's Moon Io

Understanding Cyclones on Jupiter Through Oceanography

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.