24/7 Space News
CARBON WORLDS
Smart carbon dioxide removal yields economic and environmental benefits
illustration only
Smart carbon dioxide removal yields economic and environmental benefits
by Mark Dwortzan | Center for Sustainability Science and Strategy
Boston MA (SPX) Jan 30, 2025

Last year the Earth exceeded 1.5 degrees Celsius of warming above preindustrial times, a threshold beyond which wildfires, droughts, floods, and other climate impacts are expected to escalate in frequency, intensity, and lethality. To cap global warming at 1.5 C and avert that scenario, the nearly 200 signatory nations of the Paris Agreement on climate change will need to not only dramatically lower their greenhouse gas emissions, but also take measures to remove carbon dioxide (CO2) from the atmosphere and durably store it at or below the Earth's surface.

Past analyses of the climate mitigation potential, costs, benefits, and drawbacks of different carbon dioxide removal (CDR) options have focused primarily on three strategies: bioenergy with carbon capture and storage (BECCS), in which CO2-absorbing plant matter is converted into fuels or directly burned to generate energy, with some of the plant's carbon content captured and then stored safely and permanently; afforestation/reforestation, in which CO2-absorbing trees are planted in large numbers; and direct air carbon capture and storage (DACCS), a technology that captures and separates CO2 directly from ambient air, and injects it into geological reservoirs or incorporates it into durable products.

To provide a more comprehensive and actionable analysis of CDR, a new study by researchers at the MIT Center for Sustainability Science and Strategy (CS3) first expands the option set to include biochar (charcoal produced from plant matter and stored in soil) and enhanced weathering (EW) (spreading finely ground rock particles on land to accelerate storage of CO2 in soil and water). The study then evaluates portfolios of all five options - in isolation and in combination - to assess their capability to meet the 1.5 C goal, and their potential impacts on land, energy, and policy costs.

The study appears in the journal Environmental Research Letters. Aided by their global multi-region, multi-sector Economic Projection and Policy Analysis (EPPA) model, the MIT CS3 researchers produce three key findings.

First, the most cost-effective, low-impact strategy that policymakers can take to achieve global net-zero emissions - an essential step in meeting the 1.5 C goal - is to diversify their CDR portfolio, rather than rely on any single option. This approach minimizes overall cropland and energy consumption, and negative impacts such as increased food insecurity and decreased energy supplies.

By diversifying across multiple CDR options, the highest CDR deployment of around 31.5 gigatons of CO2 per year is achieved in 2100, while also proving the most cost-effective net-zero strategy. The study identifies BECCS and biochar as most cost-competitive in removing CO2 from the atmosphere, followed by EW, with DACCS as uncompetitive due to high capital and energy requirements. While posing logistical and other challenges, biochar and EW have the potential to improve soil quality and productivity across 45 percent of all croplands by 2100.

"Diversifying CDR portfolios is the most cost-effective net-zero strategy because it avoids relying on a single CDR option, thereby reducing and redistributing negative impacts on agriculture, forestry, and other land uses, as well as on the energy sector," says Solene Chiquier, lead author of the study who was a CS3 postdoc during its preparation.

The second finding: There is no optimal CDR portfolio that will work well at global and national levels. The ideal CDR portfolio for a particular region will depend on local technological, economic, and geophysical conditions. For example, afforestation and reforestation would be of great benefit in places like Brazil, Latin America, and Africa, by not only sequestering carbon in more acreage of protected forest but also helping to preserve planetary well-being and human health.

"In designing a sustainable, cost-effective CDR portfolio, it is important to account for regional availability of agricultural, energy, and carbon-storage resources," says Sergey Paltsev, CS3 deputy director, MIT Energy Initiative senior research scientist, and supervising co-author of the study. "Our study highlights the need for enhancing knowledge about local conditions that favor some CDR options over others."

Finally, the MIT CS3 researchers show that delaying large-scale deployment of CDR portfolios could be very costly, leading to considerably higher carbon prices across the globe - a development sure to deter the climate mitigation efforts needed to achieve the 1.5 C goal. They recommend near-term implementation of policy and financial incentives to help fast-track those efforts.

Research Report:"Integrated assessment of carbon dioxide removal portfolios: land, energy, and economic trade-offs for climate policy"

Related Links
MIT Energy Initiative
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Coke oven gas offers best hydrogen source for calcium-looping carbon capture
Sydney, Australia (SPX) Jan 27, 2025
Hydrogen derived from coke oven gas, a byproduct of steel production, has emerged as the most cost-effective option for supporting "calcium looping," a promising method for carbon capture. Researchers concluded this after modeling economic and technical aspects of hydrogen production and usage. The study, published in the journal Carbon Future on December 13, highlights calcium looping as a viable approach to reducing emissions from industries such as cement, steel, and glass manufacturing. These ... read more

CARBON WORLDS
SpaceX mission to return US astronauts to happen 'soon': Trump

NASA Opens New Challenge to Inspire Climate Solutions

India becomes 4th nation to complete unmanned docking in space

India achieves 'historic' space docking mission

CARBON WORLDS
China's Hainan Commercial Launch Center expands with two new launch pads

New Shepard's 29th mission to simulate Lunar Gravity

SpaceX launches 21 Starlink satellites from Cape Caneveral

NASA's Artemis II rocket booster stacking process reaches new milestone

CARBON WORLDS
Now That's Ingenuity: First Aircraft Measurement of Winds on Another Planet

NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech

Mysterious Martian mounds formed by ancient water

New marsquake data sheds light on the Martian crust mystery

CARBON WORLDS
Shenzhou XIX crew completes second spacewalk mission

Shenzhou XIX crew completes second spacewalk

China unveils logos for three space missions in 2025

H3 Shenzhou-19 astronauts advance experiments aboard Tiangong space station

CARBON WORLDS
Stoke Space secures $260M in Series C Funding

The Tyranny of the VC Equation Why Your Company Might Not Be "VC-able"

The Space Economy to Reach $944 Billion by 2033

ispace-EUROPE secures historic authorization for Lunar resource mission

CARBON WORLDS
Materials Can Remember Sequences of Events in Unexpected Ways

EdgeCortix SAKURA-I AI Accelerator Validated for Radiation Resilience in Space Missions

DeepSeek, Chinese AI startup roiling US tech giants

Rubbish roads: Nepal explores paving with plastic

CARBON WORLDS
Extreme supersonic winds detected on distant exoplanet

Double the disks double the discovery new insights into planet formation in DF Tau

Bioactive compounds with industrial applications discovered in Andes bacteria

Astrophysicists reveal structure of exocomet belts around 74 nearby stars

CARBON WORLDS
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.