. | . |
Smaller detection device effective for nuclear treaty verification, archaeology digs by Staff Writers Washington DC (SPX) Jan 30, 2020
Most nuclear data measurements are performed at accelerators large enough to occupy a geologic formation a kilometer wide, like the Los Alamos Neutron Science Center located on a mesa in the desert. But a portable device that can reveal the composition of materials quickly on-site would greatly benefit cases such as in archaeology and nuclear arms treaty verification. Research published this week in AIP Advances, from AIP Publishing, used computational simulations to show that with the right geometric adjustments, it is possible to perform accurate neutron resonance transmission analysis in a device just 5 meters long. "We expected massive backgrounds to dilute and contaminate our signal, and early simulation work confirmed that the scale of these effects would make the technique entirely impossible," author Areg Danagoulian said. "However, careful optimization of the geometries allowed us to almost completely suppress these effects, giving us a near-perfect signal." Using a model of a pulsed deuterium-tritium neutron source in a polycone layout, the researchers performed a series of tests to optimize the moderation, shielding and collimation of the device and probe the configuration for uncertainties introduced by these adjustments. To confirm the device's accuracy, they compared spectral reconstructions and tested the isotopic sensitivity of the device. "Depending on the goal of the application, one can use spectroscopic radiography to determine the absolute abundances and densities of individual isotopes," Danagoulian said. "It can also be used in treaty verification exercises, where an authentic nuclear weapon component is compared to that from a candidate warhead." While the tests used silver, tungsten and molybdenum, the method could be used to identify isotopes of plutonium or uranium in nuclear warheads or enriched fuel, as well as tin, silver or gold in archaeological sites. Their work could also be used to similarly reduce the lengths of thermal neutron beamlines. Their work uses time-of-flight reconstructions of the energies of pulsed neutrons in order to determine the composition of target materials. These reconstructions allow analysis of the spectrum transmitted and nuclear resonances present in different isotopes to identify the isotopic makeup of the material in the target. Their results show the device was successful. It was able to precisely differentiate various isotopes and was sensitive to variations in isotopic concentrations. The authors plan to perform experimental validations of the above technique using various pulsed neutrons sources and neutron detectors.
Research Report: "Feasibility study of a compact neutron resonance transmission analysis instrument"
Americans perceive likelihood of nuclear weapons risk as 50 50 tossup Hoboken, NJ (SPX) Jan 24, 2020 It has been 30 years since the end of the Cold War, yet, on average, Americans still perceive that the odds of a nuclear weapon detonating on U.S. soil is as likely as a coin toss, according to new research from Stevens Institute of Technology. "That's exceptionally high," said Kristyn Karl, a political scientist at Stevens who co-led the work with psychologist Ashley Lytle. "People don't generally believe that highly rare events are slightly less likely than a 50/50 tossup." The finding, re ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |