. 24/7 Space News .
EXO WORLDS
Simulations provide clue to missing planets mystery
by Staff Writers
Tokyo, Japan (SPX) Nov 15, 2021

A comparison of the three phases of ring formation and deformation found in these simulations by ATERUI II (top) with real examples observed by ALMA (bottom). The dotted lines in the simulation represent the orbits of the planets, and the gray areas indicate regions not covered by the computational domain of the simulation. In the upper row, the simulated protoplanetary disks are shown from left to right at the start of planetary migration (Phase I), during planetary migration (Phase II), and at the end of planetary migration (Phase III).

Forming planets are one possible explanation for the rings and gaps observed in disks of gas and dust around young stars. But this theory has trouble explaining why it is rare to find planets associated with rings. New supercomputer simulations show that after creating a ring, a planet can move away and leave the ring behind. Not only does this bolster the planet theory for ring formation, the simulations show that a migrating planet can produce a variety of patterns matching those actually observed in disks.

Young stars are encircled by protoplanetary disks of gas and dust. One of the world's most powerful radio telescope arrays, ALMA (Atacama Large Millimeter/submillimeter Array), has observed a variety of patterns of denser and less dense rings and gaps in these protoplanetary disks. Gravitational effects from planets forming in the disk are one theory to explain these structures, but follow-up observations looking for planets near the rings have largely been unsuccessful.

In this research a team from Ibaraki University, Kogakuin University, and Tohoku University in Japan used the world's most powerful supercomputer dedicated to astronomy, ATERUI II at the National Astronomical Observatory of Japan, to simulate the case of a planet moving away from its initial formation site. Their results showed that in a low viscosity disk, a ring formed at the initial location of a planet doesn't move as the planet migrates inwards. The team identified three distinct phases. In Phase I, the initial ring remains intact as the planet moves inwards. In Phase II, the initial ring begins to deform and a second ring starts forming at the new location of the planet. In Phase III, the initial ring disappears and only the latter ring remains.

These results help explain why planets are rarely observed near the outer rings, and the three phases identified in the simulations match well with the patterns observed in actual rings. Higher resolution observations from next-generation telescopes, which will be better able to search for planets close to the central star, will help determine how well these simulations match reality.

These results appeared as K.D. Kanagawa et al. "Dust rings as a footprint of planet formation in a protoplanetary disk" in The Astrophysical Journal on November 12, 2021.

Research Report: "Dust rings as a footprint of planet formation in a protoplanetary disk"


Related Links
National Institute of Natural Sciences
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
New model will help find Earth-like Exoplanets
St Andrews, Scotland (SPX) Nov 12, 2021
A new category of planet, known as eggshell planets, which orbit distant stars, have ultra-thin crusts too thin to sustain tectonics and will be hostile to life, according to a new international study involving the University of St Andrews. A new computational model, developed by an international team of geologists based in the USA, Switzerland, France and St Andrews, published in the Journal of Geophysical Research: Planets will help identify whether newly discovered planets could support Earth-l ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
First all-private space station mission to include two dozen experiments

NASA receives 11th consecutive clean financial audit opinion

NASA Administrator Statement on Russian ASAT Test

Matthias Maurer arrives at the International Space Station

EXO WORLDS
SpinLaunch conducts first successful test of giant 'suborbital accelerator' satellite sling

Latest Vega launch paves way for Vega-C

Pangea Aerospace hot fire tests the first MethaLox aerospike engine in the world

PLD Space exhibits the first privately-developed Spanish rocket

EXO WORLDS
Curiosity continues to dine on Zechstein drill fines

Twin of NASA's Perseverance Mars rover begins terrain tests

Mars - or Arrakis

Curiosity helping make Mars safer for astronauts

EXO WORLDS
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

EXO WORLDS
Groundbreaking Iridium Certus 100 Service Launches with Partner Products for Land, Sea, Air and Industrial IoT

European software-defined satellite starts service

iRocket And Turion Space ink agreement for 10 launches to low earth orbit

OneWeb and Leonardo DRS announce partnership to offer low earth orbit services for Pentagon

EXO WORLDS
Testing mini-radar to peer inside asteroid

NATO chief slams 'reckless' Russian satellite strike

Celestia STS introduces new approach to spacecraft test and simulation

Russian MoD: US Perfectly Aware Fragments of Downed Satellite Pose No Threat to Space Activities

EXO WORLDS
The worlds next door: Looking for habitable planets around Alpha Centauri

Discovering exoplanets using artificial intelligence

Alien organisms - hitchhikers of the galaxy

"Alien" invasions and the need for planetary biosecurity

EXO WORLDS
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.