. | . |
Simulations identify missing link to determine carbon in deep Earth reservoirs by Staff Writers Chicago IL (SPX) Feb 14, 2020
Understanding the Earth's carbon cycle has important implications for understanding climate change and the health of biospheres. But scientists don't yet understand how much carbon lies deep in the Earth's water reservoirs - for example, in water that is under extreme pressure in the mantle - because experiments are difficult to conduct under such conditions. Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago and the University of Science and Technology in Hong-Kong have created a complex computer simulation that will help scientists determine the concentration of carbon under the conditions of the mantle, which include temperatures of up to 1000K and pressures of up to 10 GPa, which is 100,000 times greater than on the Earth's surface.
These simulations provide an ingenious way to evaluate University Of Chicago "Our computational strategy will greatly facilitate the determination of the amount of carbon at the extreme conditions of the Earth's mantle," said Giulia Galli, the Liew Family Professor of Molecular Engineering and professor of chemistry at UChicago, who is also a senior scientist at Argonne National Laboratory and one of the authors of the research. "Together with many other research groups around the world, we have been part of a large project aimed at understanding how much carbon is present in the Earth and how it moves from the interior toward the surface," said Ding Pan, former post-doctoral researcher at UChicago in Galli's group, first author of the research, and current assistant professor of physics and chemistry in Hong-Kong University of Science and Technology. "This is one step toward building a comprehensive picture of carbon concentration and movement in the earth."
A step toward better understanding the carbon cycle Unfortunately, there is no experimental technique yet available to directly characterize carbonates dissolved in water at extreme pressure and temperature conditions. Pan and Galli devised a novel strategy that combines spectroscopy results with sophisticated calculations based on quantum mechanics to determine the concentration of ions and molecules in water at extreme conditions. By carrying out these simulations, Pan and Galli found that the concentration of a specific important species - bicarbonate ions - has been underestimated by previously used geochemical models. They proposed a new view of what happens when you dissolve carbon dioxide in water at extreme conditions. "The determination of what happens when one dissolves carbon dioxide in water under pressure is critical to the understanding of the chemistry of carbon in the Earth's interior," Galli said. "Our study contributes to the understanding of the deep carbon cycle, which substantially influences the carbon budget near the Earth's surface." Galli and Pan's simulation were performed at the Research Computing Center at UChicago and at the Deep Carbon Observatory Computer Cluster. It is just one of the several investigations of ions in water and water at interfaces ongoing in Galli's group.
General simulation tools to understand water "A huge number of the challenges we face surrounding water center on the interface between water and the materials that make up the systems that handle, process, and treat water, including ions, of course," said Seth Darling, director of AMEWS and a PME fellow. "The quantum mechanical simulations of Galli, integrated with experiments, can make a real difference in understanding aqueous interfacial phenomena where ions, like the carbonates studied in Nature Communications, are present."
Research Report: A first principles method to determine speciation of carbonates in supercritical water
'Reverse fuel cell' converts waste carbon to valuable products at record rates Toronto, Canada (SPX) Feb 11, 2020 Fuel cells turn chemicals into electricity. Now, a University of Toronto Engineering team has adapted technology from fuel cells to do the reverse: harness electricity to make valuable chemicals from waste carbon (CO2). "For decades, talented researchers have been developing systems that convert electricity into hydrogen and back again," says Professor Ted Sargent, one of the senior authors of the paper published in Science. "Our innovation builds on that legacy, but by using carbon-based molecule ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |