. | . |
Silver sawtooth creates valley-coherent light for nanophotonics by Staff Writers Groningen, Netherlands (SPX) Feb 11, 2020
Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature. Until now, this could only be achieved at very low temperatures. Coherent light can be used to store or transfer information in quantum electronics. This plasmon-exciton hybrid device is promising for use in integrated nanophotonics (light-based electronics). The results were published in Nature Communications on 5 February. Tungsten disulfide has interesting electronic properties and is available as a 2D material. 'The electronic structure of monolayer tungsten disulfide shows two sets of lowest energy points or valleys,' explains Associate Professor Justin Ye, head of the Device Physics of Complex Materials group at the University of Groningen. One possible application is in photonics, as it can emit light with valley-dependent circular polarization - a new degree of freedom to manipulate information. However, valleytronics requires coherent and polarized light. Unfortunately, previous work showed that photoluminescence polarization in tungsten disulfide is almost random at room temperature.
Valleys Ye and his postdoctoral researcher Chunrui Han (now working at the Institute of Microelectronics, Chinese Academy of Sciences) therefore tried a different approach to create linearly polarized light by using a plasmonic metasurface, in the form of a silver sawtooth nanoslit array. Such a material interacts strongly with tungsten disulfide and can transfer resonance induced by light in the form of an electromagnetic field in the metal. 'It enhances the light-material interaction,' says Ye.
Silver The linear polarization could be further increased to 80 percent by adding the anisotropy of plasmonic resonance, in the form of the sawtooth pattern, to the optical response of the tungsten disulfide. This means that Ye and Han are now able to induce linearly polarized photoluminescence in this material. This accomplishment will make it possible to use both valley coherence of tungsten disulfide and plasmonic coherence of metasurfaces in optoelectronics at ambient temperatures. The next step is to replace the laser light that induced photoluminescence with electrical input.
Research Report: "Polarized resonant emission of monolayer WS2 coupled with plasmonic sawtooth nanoslit array"
Controlling light with light Boston MA (SPX) Feb 07, 2020 The future of computation is bright - literally. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at McMaster University and University of Pittsburgh, have developed a new platform for all-optical computing, meaning computations done solely with beams of light. "Most computation right now uses hard materials such as metal wires, semiconductors and photodiodes to couple electronics to light," said Amos Meeks, a graduat ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |