. | . |
Silver nanowires promise more comfortable smart textiles by Staff Writers New York NY (SPX) Dec 28, 2018
In a paper to be published in the forthcoming issue in NANO, researchers from the Nanjing University of Posts and Telecommunications have developed a simple, scalable and low-cost capillary-driven self-assembly method to prepare flexible and stretchable conductive fibers that have applications in wearable electronics and smart fabrics. A simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength has been developed by a team of researchers in Nanjing, China. Dr. Yi Li and Yanwen Ma, from the Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM) of Nanjing University of Posts and Telecommunications and his collaborators have developed a simple, scalable and low cost capillarity-driven self-assembly route to produce silver nanowires (Ag NWs) coated flexible and stretchable conductive fibers. Taking advantage of the capillary action of fibers, such as cotton, nylon and polyester yarns as well as PDMS fibers, the solution containing Ag NWs is spontaneously absorbed into the capillary tunnels. Then Ag NWs are evenly coated onto the fibers through evaporation-induced flow and capillary-driven self-assembly process to form conductive fibers, which is in situ observed by the optical microscopic measurement. The fabricated flexible and stretchable conductor exhibits uniform morphology, high conductivity and good mechanical strength, which is promising for the application in wearable electronics and smart fabrics. Conventional conductive fibers are metal wires such as stainless steel and copper wires, as well as the metal film coated yarn. These conductive fibers are stiff and brittle, not meeting the demand of flexibility and comfortability for smart textiles. Smart textiles with electronic devices such as sensor, light emitting diode, transistor, battery and supercapacitors integrated into fabrics have drawn considerable attention. Conductive fibers and yarns, with the function of connecting various electronic devices, play a key role in smart textiles system. Recently, conductive nanomaterials such as metal nanomaterials, carbon nanotubes and graphene with high conductivity, good mechanical properties, feasibility of large-scale production and solution-process, have become a new type of fundamental materials for conductive fibers. Great efforts have been made to engineer conductive nanomaterials into conductive fibers by various technologies such as vapor deposition, electrospinning and spray coating methods. Despite these promising progresses, the facile, large-scale and cost-effective fabrication of conductive fibers with high flexibility and good electrical conductivity is still a challenge.
Sustainable 'plastics' are on the horizon Tel Aviv, Israel (SPX) Dec 27, 2018 A new Tel Aviv University study describes a process to make bioplastic polymers that don't require land or fresh water - resources that are scarce in much of the world. The polymer is derived from microorganisms that feed on seaweed. It is biodegradable, produces zero toxic waste and recycles into organic waste. The invention was the fruit of a multidisciplinary collaboration between Dr. Alexander Golberg of TAU's Porter School of Environmental and Earth Sciences and Prof. Michael Gozin of TAU's S ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |