. 24/7 Space News .
ENERGY TECH
Sieving carbons: Ideal anodes for high-energy sodium-ion batteries
by Staff Writers
Tianjin, China (SPX) Jul 06, 2022

stock image only

The exponentially increasing implementation of renewable energy systems, such as wind and solar energy, are urgently demanding the development of large-scale energy storage devices with flexibility, high energy conversion efficiency, and simple maintenance. Among diverse candidates, due to the natural abundance and low cost of sodium reserves, sodium-ion batteries (SIBs) have recently captured widespread attention from both the academia and industry as a sustainable supplement to lithium-ion batteries (LIBs).

Non-graphitic carbons are the most promising anode candidates for SIBs. However, challenged by their variable and complicated microstructures, what is the ideal carbon anode for SIBs that can play a similar role to what graphite does in lithium-ion batteries and how to rationally design the ideal carbon anodes are fundamental but remains poorly understood. This inevitably impedes the commercialization of SIBs.

Led by Prof. Quan-Hong Yang, Dr. Jun Zhang (Tianjin University) and Prof. Yong Yang (Xiamen University), a recent study proposed sieving carbons (SCs), featuring highly tunable nanopores with the tightened pore entrance, as the practical anodes for high-energy SIBs with the extensible and reversible low-potential charge/discharge plateaus (LPPs, <0.1 V vs. Na+/Na).

This study showed that the small pore entrance diameter (<0.4 nm) helped screen out the solvated sodium ions and induce the formation of solid electrolyte interphase (SEI) mainly outside the nanopores. By using SCs as the ideal carbon models for investigating the mechanism related to the LPPs, it was shown that bare sodium ions firstly adsorbed on the defective pore surface, and aggregated to finally form the quasi-metallic sodium clusters inside nanopores.

With spectroscopic and theoretical studies, an approximately linear correlation between the specific surface area in SCs and the plateau capacity was revealed, leading to a record-high plateau capacity of 400 mAh g-1.

A pore body diameter with an upper limit (~2.0 nm) was further proved to guarantee the reversibility of the LPPs, critical for enhancing the cycling stability of SC anodes. More promisingly, the reported way of preparing SCs was potential to be scalable for modifying commercial porous carbons to be practical anode materials, paving the way for the rapid commercialization of SIBs.

"The proposed sieving carbons is a conceptual advance for the carbon anode design for high-energy SIBs, and potential to play a similar role to what graphite does in lithium-ion batteries." Prof. Quan-Hong Yang said, "The structural tunability makes sieving carbons also promising for practical use in high-energy or high-power lithium-ion batteries, potassium-ion batteries and so on."

Research Report:Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries


Related Links
Tianjin University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion
Beijing, China (SPX) Jul 06, 2022
Lithium-sulfur batteries have for some time promised to be the successor to lithium-ion batteries, as they offer a fantastic capacity-the amount of electric charge a battery can deliver at a given voltage-at least in principle. But so far in practice, they have not at all lived up to their promise. Two opposing approaches, both aiming at reducing the volume of electrolyte required, potentially offer a pathway to solving the problem. A new review paper compares the two options and considers the applicati ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
CAPSTONE deploys from Rocket Lab Lunar Photon into Lunar Transfer Orbit

RIT receives NASA funding to develop new diffractive solar sail concepts

Rocket Lab's Lunar Photon completes 6th orbital raise preps for final Earth-escape burn

NASA program brings big benefits to Big Ten School

ENERGY TECH
Hypersonics: Developing and defending against missiles far faster than sound

Musk says doing 'best' to boost birth rates

Rocket Lab Introduces Responsive Space Program

Elon Musk had twins with company exec last year: report

ENERGY TECH
My Favorite Martian Image: 'Enchanted' Rocks at Jezero Crater

Eyeing Kukenan - Sols 3519-3524

Historic Mars mission completes all preset tasks

Help NASA scientists find clouds on Mars

ENERGY TECH
Wheels on China's Zhurong rover keep stable with novel material

Shenzhou XIII astronauts doing well after returning to Earth

Chinese official says its Mars sample mission will beat NASA back to Earth

China's deep space exploration laboratory starts operation

ENERGY TECH
SatixFy Technology enables first 5G link through a LEO constellation

SES-22 set to launch on Falcon 9 June 29

Inmarsat report calls for enhanced debris mitigation and stronger regulations in space

Beyond Gravity launches its own start-up program "Launchpad"

ENERGY TECH
Smart textiles sense how their users are moving

US giant 3M agrees big payout in Belgium chemical scandal

WVU researchers won't hit snooze on mattress recycling needs

Chinese ice cream brand under fire for products that don't melt

ENERGY TECH
AI experts called on to join the hunt for exoplanets

Life in the Earth's interior as productive as in some ocean waters

Long-term liquid water also on non-Earth-like planets

Ancient microbes may help us find extraterrestrial life forms

ENERGY TECH
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.