. 24/7 Space News .
EXO WORLDS
Shrinking planets could explain mystery of universe's missing worlds
by Staff Writers
New York NY (SPX) May 18, 2021

A full size infographic is available here

There's been a breakthrough in the case of the missing planets. While planet-hunting missions have discovered thousands of worlds orbiting distant stars, there's a severe scarcity of exoplanets that measure between 1.5 and two times Earth's radius. That's the middle ground between rocky super-Earths and larger, gas-shrouded planets called mini-Neptunes. Since discovering this 'radius gap' in 2017, scientists have been sleuthing out why there are so few midsize heavenly bodies.

The new clue arose from a fresh way of looking at the data. A team of researchers led by the Flatiron Institute's Trevor David investigated whether the radius gap changes as planets age. They divvied up exoplanets into two groups - young and old - and reassessed the gap. The least common planet radii from the younger set were smaller on average than the least common ones from the older set, they found. While the scarcest size for younger planets was about 1.6 times Earth's radius, it's about 1.8 times Earth's radius at older ages.

The implication, the researchers propose, is that some mini-Neptunes shrink drastically over billions of years as their atmospheres leak away, leaving behind only a solid core. By losing their gas, the mini-Neptunes "jump" the planet radius gap and become super-Earths.

As time goes on, the radius gap shifts as larger and larger mini-Neptunes make the jump, transforming into larger and larger super-Earths. The gap, in other words, is the chasm between the largest-size super-Earths and the smallest-size mini-Neptunes that can still retain their atmospheres. The researchers report their findings May 14 in The Astronomical Journal.

"The overarching point is that planets are not the static spheres of rocks and gas we sometimes tend to think of them as," says David, a research fellow at the Flatiron Institute's Center for Computational Astrophysics (CCA) in New York City. In some previously proposed models of atmosphere loss, "some of these planets were 10 times larger at the starts of their lives."

The findings lend credence to two previously proposed suspects in the case: leftover heat from planetary formation and intense radiation from the host stars. Both phenomena add energy into a planet's atmosphere, causing gas to escape into space. "Probably both effects are important," says David, "but we'll need more sophisticated models to tell how much each of them contributes and when" in the planet's life cycle.

The paper's co-authors include CCA research fellow Gabriella Contardo, CCA associate research scientist Ruth Angus, CCA associate research scientist Megan Bedell, CCA associate research scientist Daniel Foreman-Mackey and CCA guest researcher Samuel Grunblatt.

The new study used data collected by the Kepler spacecraft, which measured the light from distant stars. When an exoplanet moves between a star and Earth, the observed light from the star dims. By analyzing how quickly the planet orbits its star, the star's size, and the extent of the dimming, astronomers can estimate the exoplanet's size. These analyses ultimately led to the discovery of the radius gap.

Scientists have previously proposed a few potential mechanisms for the gap's creation, with each process taking place over a different timescale. Some believed that the gap occurs during planetary formation when some planets form without enough nearby gas to puff up their size.

In this scenario, the planet's radius, and therefore the radius gap, would be imprinted at birth. Another hypothesis was that collisions with space rocks could blast away a planet's thick atmosphere, preventing tinier planets from accumulating lots of gas. This impact mechanism would take roughly 10 million to 100 million years.

Other potential mechanisms require more time. One proposal is that intense X-rays and ultraviolet radiation from a planet's host star strips gas away over time. This process, called photoevaporation, would take less than 100 million years for most planets but could take billions of years for some. Another suggestion is that remnant heat from a planet's formation slowly adds energy to the planet's atmosphere, causing gas to escape into space over billions of years.

David and his colleagues started their investigation by taking a closer look at the gap itself. Gauging the sizes of stars and exoplanets can be tricky, so they cleaned up the data to only include planets whose diameters were confidently known. This data processing revealed an emptier gap than previously thought.

The researchers then sorted the planets based on whether they were younger or older than 2 billion years. (Earth, for comparison, is 4.5 billion years old.) Since a star and its planets form simultaneously, they determined each planet's age based on its star's age.

The results suggest that smaller mini-Neptunes are unable to hold on to their gas. Over billions of years, the gas is stripped away, leaving behind a mostly solid super-Earth. That process takes longer for larger mini-Neptunes - which become the largest super-Earths - but won't impact the most gargantuan gas planets, whose gravity is strong enough to hold their atmospheres.

The fact that the radius gap evolves over billions of years suggests that the culprit isn't planetary collisions or an inherent quirk of planetary formation. Remnant heat from inside the planets gradually stripping away the atmosphere is a good fit, David says, but intense radiation from the parent stars could also contribute, especially early on.

The next step is for scientists to better model how planets evolve to suss out which explanation plays a bigger role. That could mean considering additional complexities such as the interactions between fledgling atmospheres and planetary magnetic fields or magma oceans.


Related Links
Simons Foundation
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
First ever discovery of methanol in a warm planet-forming disk
Leiden Netherlands (SPX) May 11, 2021
An international team of researchers led by Alice Booth (Leiden University, the Netherlands) have discovered methanol in the warm part of a planet-forming disk. The methanol cannot have been produced there and must have originated in the cold gas clouds from which the star and the disk formed. Thus, the methanol is inherited. If that is common, it could give the formation of life elsewhere a flying start. The researchers will publish their findings on Monday evening in Nature Astronomy. Meth ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Boeing's troubled Starliner capsule now aiming for July launch

NASA, Axiom Agree to First Private Astronaut Mission on Space Station

NASA Invests $105 Million in US Small Business Technology Development

Project Examines How to Water Plants in Space

EXO WORLDS
First Ariane 6 fairing at Europe's Spaceport

SpaceX signs deal with Google Cloud for satellite broadband

SpaceX to launch lunar mission paid with cryptocurrency Dogecoin

Protests over SpaceX contract put timetable for lunar return in limbo

EXO WORLDS
Seeing NASA's Ingenuity Mars Helicopter Fly in 3D

Perseverance's Robotic Arm Starts Conducting Science

Perseverance rover captures sound of Ingenuity flying on Mars

Perseverance, Hope and a fire god: a history of Mars rovers

EXO WORLDS
'Nihao Mars': China's Zhurong rover touches down on Red Planet

Tianzhou 2, carrier rocket transported to launchpad for liftoff

China wants to send spacecraft to edge of solar system to mark 100th year of PRC

China's space station takes shared future concept to space

EXO WORLDS
SpaceX launches 52 Starlink satellites, two other payloads

Xplore opens 22,000 sq ft satellite manufacturing facility to advance satellite production

Spacecraft magnetic valve used to fill drinks

SpaceX launches 60 Starlink satellites from Florida

EXO WORLDS
Large Chinese rocket segment disintegrates over Indian Ocean

Laser communications powers more data than ever before

ABC Solar Augmented Reality Assistant for Inverter Repair with AI presented for DARPA Task Mastery Bid

SEAKR Engineering uses AdaCore technologies to develop software for spacecraft systems

EXO WORLDS
How planets form controls elements essential for life

First ever discovery of methanol in a warm planet-forming disk

Alien radioactive element prompts creation rethink

Coldplay beam new song into space in chat with French astronaut

EXO WORLDS
Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.