![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Quebec City, Canada (SPX) Nov 08, 2017
An international team of researchers from multiple institutions, including INRS, is shedding light on the mystery of matter accretion in young stars. Published in the November 1, 2017 Science Advances online journal, their discovery helps explain how matter accumulates on the surface of a young star and reconciles the theory behind and observations on the accretion process - a matter of debate among astrophysicists because of the limited number of theoretical models and actual observations. An experiment replicating the accretion phenomenon on a star was conducted in a laboratory. Researchers took a close look at what happens when a laser-produced column of plasma impacts a solid obstacle in the presence of an intense magnetic field. X-ray emissions measurements verified the presence of an envelope of plasma around the core of the accretion zone of the matter on the star's surface. Discovery of the envelope allows researchers to accurately calculate the matter accretion rate. The importance of this discovery lies in the fact that a star is born, grows, reaches adult size, and then dies either by exploding or by collapsing in on itself to have much less volume but much greater density. Stars have a lifespan like any living thing. The adult phase - like our sun is in - lasts for many billions of years. Outside the birth of a planet (like Earth) or the appearance of life, it is a relatively quiet time in the life of a star. Physicists are more interested in the birth and death of stars - these are defining moments. By looking at the emission of x-rays from the surface, scientists can also determine the rate at which stars grow under the influence of gravity as they pull in the interstellar matter surrounding them. To accurately interpret these x-rays, scientists must ensure they are not being obscured by something - hence the importance of the discovery of an envelope.
![]() Sao Paulo, Brazil (SPX) Nov 03, 2017 A group of Brazilian astronomers observed a pair of celestial objects rarely seen in the Milky Way: a very low-mass white dwarf and a brown dwarf. A white dwarf is the endpoint of the evolution of an intermediate- or low-mass star, with a mass between 0.5 and 8 times that of our Sun. A brown dwarf is a substellar object with mass intermediate between those of a star and a planet. On analyz ... read more Related Links Institut national de la recherche scientifique - INRS Stellar Chemistry, The Universe And All Within It
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |