. | . |
Shaping the future of light through reconfigurable metasurfaces by Staff Writers Atlanta GA (SPX) May 18, 2022
The technological advancement of optical lenses has long been a significant marker of human scientific achievement. Eyeglasses, telescopes, cameras, and microscopes have all literally and figuratively allowed us to see the world in a new light. Lenses are also a fundamental component of manufacturing nanoelectronics by the semiconductor industry. One of the most impactful breakthroughs of lens technology in recent history has been the development of photonic metasurfaces - artificially engineered nano-scale materials with remarkable optical properties. Georgia Tech researchers at the forefront of this technology have recently demonstrated the first-ever electrically tunable photonic metasurface platform in a recent study published by Nature Communications. "Metasurfaces can make the optical systems very thin, and as they become easier to control and tune, you'll soon find them in cell phone cameras and similar electronic imaging systems," said Ali Adibi, professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. The pronounced tuning measures achieved through the new platform represent a critical advancement towards the development of miniaturized reconfigurable metasurfaces. The results of the study have shown a record eleven-fold change in the reflective properties, a large range of spectral tuning for operation, and much faster tuning speed.
Heating Up Metasurfaces "When viewing under very strong microscopes, metasurfaces look like a periodic array of posts," said Adibi. "The best analogy would be to think of a LEGO pattern formed by connecting many similar LEGO bricks next to each other." Since their inception, metasurfaces have been used to demonstrate that very thin optical devices can affect light propagation with metalenses (the formation of thin lenses) being the most developed application. Despite impressive progress, most demonstrated metasurfaces are passive, meaning their performance cannot be changed (or tuned) after fabrication. The work presented by Adibi and his team, led by Ph.D. candidate Sajjad Abdollahramezani, applies electrical heat to a special class of nanophotonic materials to create a platform that can enable reconfigurable metasurfaces to be easily manufactured with high levels of optical modulation.
PCMs Provide the Answer The Georgia Tech team's experiments are substantially more complicated than heating and freezing water. Knowing that the optical properties of PCMs can be altered by local heating, they have harnessed the full potential of the PCM alloy Ge2Sb2Te5 (GST), which is a compound of germanium, antimony, and tellurium. By combining the optical design with a miniaturized electrical microheater underneath, the team can change the crystalline phase of the GST to make active tuning of the metasurface device possible. The fabricated metasurfaces were developed at Georgia Tech's Institute for Electronics and Nanotechnology (IEN) and tested in characterization labs by illuminating the reconfigurable metasurfaces with laser light at different frequencies and measuring the properties of the reflected light in real time.
What Tunable Metasurfaces Mean for the Future With further development, more aggressive applications like computing, augmented reality, photonic chips for artificial intelligence, and biohazard detection can also be envisioned, according to Abdollahramezani and Adibi. "As the platform continues to develop, reconfigurable metasurfaces will be found everywhere," said Adibi. "They will even empower smaller endoscopes to go deep inside the body for better imaging and help medical sensors detect different biomarkers in blood."
Research Report:Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency
Harnessing the powers of light to operate computers Tsukuba, Japan (SPX) Apr 29, 2022 It is said that light is the source of life, and in the near future, it will possibly form the basis of our everyday personal computing needs too. Recently, researchers from the University of Tsukuba have harnessed specific energies of light from a 'packet' of light by creating a nanocavity, which may help in the development of future all-optical computers. Fiber optic cables already take advantage of the unimaginably fast speed of light to transmit internet data. However, these signals first need ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |