. | . |
Shape shifting mirror opens a vista for the future by Staff Writers Osaka, Japan (SPX) Apr 03, 2019
A team of researchers from JTEC Corporation and Osaka University developed a bimorph deformable mirror that allows for precise shape modification and usage under vacuum, a world first. Because piezo actuators and a mirror substrate in conventional deformable mirrors were bonded with epoxy glues, this caused problems such as organic gas emission in a vacuum chamber and denatured bonding materials due to chamber cleaning at high temperatures. Thus, the use of a deformable mirror was performed only in ambient atmospheres. The team led by Kazuo Yamauchi invented a method for bonding PZT actuators to a mirror substrate without using epoxy glues to develop a glue-free bimorph deformable mirror (Figure 1), allowing for usage of deformable mirrors under vacuum. In this study, they developed a technique to bond PZT actuators to a mirror substrate by using inorganic silver nanoparticles (not containing organic matter). They confirmed that the emission rate of organic gas was at an acceptable level: the vacuum chamber was not contaminated by the gas while maintaining the same level of operability as that of conventional mirrors. They also confirmed that the bonding and bending characteristics were almost the same before and after heating at 200?, which is necessary for cleaning procedures. These results verified practical usage of this mirror under vacuum. (Figure 2) This group's achievements will permit a maximal use of 100-1,000 times brighter X-rays provided by fourth-generation synchrotron radiation facilities than that of current third-generation facilities. This mirror will be used in X-ray experiments and soft X-ray systems, both of which need a high vacuum environment, for the fourth-generation large synchrotron radiation facilities in which precision optics under vacuum are indispensable. "Our bimorph deformable mirror will be used in a variety of applications - not only for X-ray radiation systems, but also for controlling space telescopes and high intensity lasers," says first author Yoshio Ichii.
Research Report:
Polythene films strong as aluminum could be used for windows, screens and phones Warwick UK (SPX) Apr 02, 2019 Research led by Professor Ton Peijs of WMG at the University of Warwick and Professor Cees Bastiaansen at Queen Mary University of London, has devised a processing technique that can create transparent polythene film that can be stronger as aluminium but at a fraction of the weight, and which could be used use in glazing, windscreens, visors and displays in ways that add strength and resilience while reducing weight. In a new research paper entitled "Glass-like transparent high strength polyethyle ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |