![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Boston MA (SPX) Oct 28, 2021
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a shape-shifting material that can take and hold any possible shape, paving the way for a new type of multifunctional material that could be used in a range of applications, from robotics and biotechnology to architecture. The research is published in the Proceedings of the National Academy of Sciences. "Today's shape-shifting materials and structures can only transition between a few stable configurations but we have shown how to create structural materials that have an arbitrary range of shape-morphing capabilities," said L Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, of Organismic and Evolutionary Biology, and of Physics and senior author of the paper. "These structures allow for independent control of the geometry and mechanics, laying the foundation for engineering functional shapes using a new type of morphable unit cell." One of the biggest challenges in designing shape-morphing materials is balancing the seemingly contradictory needs of conformability and rigidity. Conformability enables transformation to new shapes but if it's too conformal, it can't stably maintain the shapes. Rigidity helps lock the material into place but if it's too rigid, it can't take on new shapes. The team started with a neutrally stable unit cell with two rigid elements, a strut and a lever, and two stretchable elastic springs. If you've ever seen the beginning of a Pixar movie, you've seen a neutrally stable material. The Pixar lamp head is stable in any position because the force of gravity is always counteracted by springs that stretch and compress in a coordinated way, regardless of the lamp configuration. In general, neutrally stable systems, a combination of rigid and elastic elements balances the energy of the cells, making each neutrally stable, meaning that they can transition between an infinite number of positions or orientations and be stable in any of them. "By having a neutrally stable unit cell we can separate the geometry of the material from its mechanical response at both the individual and collective level," said Gaurav Chaudhary, a postdoctoral fellow at SEAS and co-first author of the paper. "The geometry of the unit cell can be varied by changing both its overall size as well as the length of the single movable strut, while its elastic response can be changed by varying either the stiffness of the springs within the structure or the length of the struts and links." The researchers dubbed the assembly as "totimorphic materials" because of their ability to morph into any stable shape. The researchers connected individual unit cells with naturally stable joints, building 2D and 3D structures from individual totimorphic cells. The researchers used both mathematical modeling and real-world demonstrations to show the material's shape-shifting ability. The team demonstrated that one single sheet of totimorphic cells can curve up, twist into a helix, morph into the shape of two distinct faces and even bear weight. "We show that we can assemble these elements into structures that can take on any shape with heterogeneous mechanical responses," said S. Ganga Prasath, a postdoctoral fellow at SEAS and co-first author of the paper. "Since these materials are grounded in geometry, they could be scaled down to be used as sensors in robotics or biotechnology or could be scaled up to be used at the architectural scale. "All together, these totimorphs pave the way for a new class of materials whose deformation response can be controlled at multiple scales," said Mahadevan.
![]() ![]() Bio-inspired autonomous materials Santa Barbara CA (SPX) Oct 28, 2021 Megan Valentine, a professor of mechanical engineering and co-director of the California NanoSystems Institute at UC Santa Barbara, has been awarded a $1.8 million collaborative grant by the National Science Foundation to design and create next-generation materials inspired and empowered by biological cells. Valentine will be working alongside a team of physicists, biologists and engineers, four of whom are women. Led by Rae Robertson-Anderson, a professor of physics and biophysics at the Universi ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |