. 24/7 Space News .
IRON AND ICE
Second rehearsal puts OSIRIS-REx on path to sample collection
by Brittany Enos for UA News
Tucson AZ (SPX) Aug 14, 2020

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface - before the spacecraft executes the "Checkpoint" maneuver - and runs through to the "Matchpoint" maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu. The spacecraft's sampling arm - called the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) - is visible in the lower part of the frame. See video sequence at closest approach here.

Yesterday, the OSIRIS-REx spacecraft performed its final practice run of the sampling sequence, reaching an approximate altitude of 131 feet (40 meters) over sample site Nightingale before executing a back-away burn. Nightingale, OSIRIS-REx's primary sample collection site, is located within a crater in Bennu's northern hemisphere.

The approximately four-hour "Matchpoint" rehearsal took the spacecraft through the first three of the sampling sequence's four maneuvers: the orbit departure burn, the "Checkpoint" burn and the Matchpoint burn.

Checkpoint is the point where the spacecraft autonomously checks its position and velocity before adjusting its trajectory down toward the event's third maneuver. Matchpoint is the moment when the spacecraft matches Bennu's rotation in order to fly in tandem with the asteroid surface, directly above the sample site, before touching down on the targeted spot.

Four hours after departing its 0.6-mile (1-km) safe-home orbit, OSIRIS-REx performed the Checkpoint maneuver at an approximate altitude of 410 feet (125 meters) above Bennu's surface. From there, the spacecraft continued to descend for another eight minutes to perform the Matchpoint burn. After descending on this new trajectory for another three minutes, the spacecraft reached an altitude of approximately 131 ft (40 m) - the closest the spacecraft has ever been to Bennu - and then performed a back-away burn to complete the rehearsal.

During the rehearsal, the spacecraft successfully deployed its sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM), from its folded, parked position out to the sample collection configuration.

Additionally, some of the spacecraft's instruments collected science and navigation images and made spectrometry observations of the sample site, as will occur during the sample collection event. These images and science data were downlinked to Earth after the event's conclusion.

Because the spacecraft and Bennu are currently about 179 million miles (288 million km) from Earth, it takes approximately 16 minutes for the spacecraft to receive the radio signals used to command it. This time lag prevented live commanding of flight activities from the ground during the rehearsal.

As a result, the spacecraft performed the entire rehearsal sequence autonomously. Prior to the rehearsal's start, the OSIRIS-REx team uplinked all of the event's commands to the spacecraft and then provided the "Go" command to begin the event. The actual sample collection event in October will be conducted the same way.

This second rehearsal provided the mission team with practice navigating the spacecraft through the first three maneuvers of the sampling event and with an opportunity to verify that the spacecraft's imaging, navigation and ranging systems operated as expected during the first part of the descent sequence.

Matchpoint rehearsal also confirmed that OSIRIS-REx's Natural Feature Tracking (NFT) guidance system accurately estimated the spacecraft's trajectory after the Matchpoint burn, which is the final maneuver before the sample collection head contacts Bennu's surface. This rehearsal was also the first time that the spacecraft's on-board hazard map was employed. The hazard map delineates areas that could potentially harm the spacecraft.

If the spacecraft detects that it is on course to touch a hazardous area, it will autonomously back-away once it reaches an altitude of 16 ft (5 m). While OSIRIS-REx did not fly that low during the rehearsal, it did employ the hazard map to assess whether its predicted touchdown trajectory would have avoided surface hazards, and found that the spacecraft's path during the rehearsal would have allowed for a safe touchdown on sample site Nightingale.

During the last minutes of the spacecraft's descent, OSIRIS-REx also collected new, high-resolution navigation images for the NFT guidance system. These detailed images of Bennu's landmarks will be used for the sampling event, and will allow the spacecraft to accurately target a very small area.

"Many important systems were exercised during this rehearsal - from communications, spacecraft thrusters, and most importantly, the onboard Natural Feature Tracking guidance system and hazard map," said OSIRIS-REx principal investigator Dante Lauretta of the University of Arizona, Tucson.

"Now that we've completed this milestone, we are confident in finalizing the procedures for the TAG event. This rehearsal confirmed that the team and all of the spacecraft's systems are ready to collect a sample in October."

The mission team has spent the last several months preparing for Matchpoint rehearsal while maximizing remote work as part of the COVID-19 response. On the day of rehearsal, a limited number of personnel monitored the spacecraft's telemetry from Lockheed Martin Space's facility, NASA's Goddard Space Flight Center and the University of Arizona, taking appropriate safety precautions, while the rest of the team performed their roles remotely.

The spacecraft will travel all the way to the asteroid's surface during its first sample collection attempt, scheduled for Oct. 20. During this event, OSIRIS-REx's sampling mechanism will touch Bennu's surface for several seconds, fire a charge of pressurized nitrogen to disturb the surface and collect a sample before the spacecraft backs away. The spacecraft is scheduled to return the sample to Earth on Sept. 24, 2023.


Related Links
OSIRIS-Rex
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Bright areas on Ceres come from salty water below
Pasadena CA (JPL) Aug 12, 2020
NASA's Dawn spacecraft gave scientists extraordinary close-up views of the dwarf planet Ceres, which lies in the main asteroid belt between Mars and Jupiter. By the time the mission ended in October 2018, the orbiter had dipped to less than 22 miles (35 kilometers) above the surface, revealing crisp details of the mysterious bright regions Ceres had become known for. Scientists had figured out that the bright areas were deposits made mostly of sodium carbonate - a compound of sodium, carbon, and o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
ISS crew moved to Russian segment for 3 days to search for air leak

NASA perseveres through pandemic, looks ahead in 2020, 2021

Moonstruck 'aroma sculptor' builds scent from space

A QandA on the Demo-2 mission

IRON AND ICE
NASA's Green Propellant Infusion Mission nears completion

US Air Force and Lockheed Martin complete another successful hypersonics test

Vega launch now set for 1 September

Sierra Nevada aims to complete Dream Chaser space plane in March

IRON AND ICE
Sustained planetwide storms may have filled lakes, rivers on ancient mars

Deep learning will help future Mars rovers go farther, faster, and do more science

Follow Perseverance in real time on its way to Mars

NASA establishes Board to initially review Mars sample return plans

IRON AND ICE
China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

IRON AND ICE
Ban on import of communication satellites opens up opportunity says ISRO chief

ESA astronauts are flat out training

Kleos to launch second satellite cluster on SpaceX Falcon 9

New UK space projects to boost global sustainable development receive cash boost

IRON AND ICE
New ground station brings laser communications closer to reality

NASA selects SwRI to participate in $6B Rapid Spacecraft Acquisition IV Contract

Return of the LIDAR

Novel method of heat conduction could be a game changer for server farms and aircraft

IRON AND ICE
Pristine space rock offers NASA scientists peek at evolution of life's building blocks

Rogue planets could outnumber the stars

Hundred cool worlds found near the sun

The most sensitive instrument in the search for life in space comes from Bern

IRON AND ICE
Large shift on Europa was last event to fracture its surface

Technology ready to explore subsurface oceans on Ganymede

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.