. 24/7 Space News .
IRON AND ICE
Second Alignment Plane of Solar System Discovered
by Staff Writers
Tokyo, Japan (SPX) Sep 30, 2020

Artist's impression of the distribution of long-period comets. The converging lines represent the paths of the comets. The ecliptic plane is shown in yellow and the empty ecliptic is shown in blue. The background grid represents the plane of the Galactic disk.

A study of comet motions indicates that the solar system has a second alignment plane. Analytical investigation of the orbits of long-period comets shows that the aphelia of the comets, the point where they are farthest from the Sun, tend to fall close to either the well-known ecliptic plane where the planets reside or a newly discovered "empty ecliptic." This has important implications for models of how comets originally formed in the solar system.

In the solar system, the planets and most other bodies move in roughly the same orbital plane, known as the ecliptic, but there are exceptions such as comets. Comets, especially long-period comets taking tens of thousands of years to complete each orbit, are not confined to the area near the ecliptic; they are seen coming and going in various directions.

Models of solar system formation suggest that even long-period comets originally formed near the ecliptic and were later scattered into the orbits observed today through gravitational interactions, most notably with the gas giant planets.

But even with planetary scattering, the comet's aphelion, the point where it is farthest from the Sun, should remain near the ecliptic. Other, external forces are needed to explain the observed distribution. The solar system does not exist in isolation; the gravitational field of the Milky Way Galaxy in which the solar system resides also exerts a small but non-negligible influence.

Arika Higuchi, an assistant professor at the University of Occupational and Environmental Health in Japan and previously a member of the NAOJ RISE Project, studied the effects of the galactic gravity on long-period comets through analytical investigation of the equations governing orbital motion. She showed that when the galactic gravity is taken into account, the aphelia of long-period comets tend to collect around two planes. First the well-known ecliptic, but also a second "empty ecliptic."

The ecliptic is inclined with respect to the disk of the Milky Way by about 60 degrees. The empty ecliptic is also inclined by 60 degrees, but in the opposite direction. Higuchi calls this the "empty ecliptic" based on mathematical nomenclature and because initially it contains no objects, only later being populated with scattered comets.

Higuchi confirmed her predictions by cross-checking with numerical computations carried out in part on the PC Cluster at the Center for Computational Astrophysics of NAOJ. Comparing the analytical and computational results to the data for long-period comets listed in NASA's JPL Small Body Database showed that the distribution has two peaks, near the ecliptic and empty ecliptic as predicted. This is a strong indication that the formation models are correct and long-period comets formed on the ecliptic.

However, Higuchi cautions, "The sharp peaks are not exactly at the ecliptic or empty ecliptic planes, but near them. An investigation of the distribution of observed small bodies has to include many factors. Detailed examination of the distribution of long-period comets will be our future work. The all-sky survey project known as the Legacy Survey of Space and Time (LSST) will provide valuable information for this study."

Research Report: "Anisotropy of Long-Period Comets Explained by Their Formation Process"


Related Links
National Astronomical Observatory Of Japan
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
SwRI instruments on Rosetta help detect ultraviolet aurora at comet
San Antonio TX (SPX) Sep 22, 2020
Data from Southwest Research Institute-led instruments aboard ESA's Rosetta spacecraft have helped reveal auroral emissions in the far ultraviolet around a comet for the first time. At Earth, auroras are formed when charged particles from the Sun follow our planet's magnetic field lines to the north and south poles. There, solar particles strike atoms and molecules in Earth's atmosphere, creating shimmering curtains of colorful light in high-latitude skies. Similar phenomena have been seen at vari ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russia reports 'non-standard' air leak on Space Station

Russia to launch two new modules to Space Station in April, September 2021

Astronauts close to finding source of air leak at Space Station

ISS Crew continues troubleshooting as tests isolate small leak

IRON AND ICE
SpaceX improved Crew Dragon capsule for planned Oct. 31 launch

NASA, SpaceX to launch first Commercial Crew rotation mission to International Space Station

Space Force to start flying on reused SpaceX rockets

Blue Origin postpones Texas launch of experiments for NASA, universities

IRON AND ICE
Study: Mars has four bodies of water underneath surface

The topography of the Jezero crater landing site of NASA's Mars 2020 mission

Could life exist deep underground on Mars

Perseverance will use x-rays to hunt fossils

IRON AND ICE
NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

Chinese spacecraft launched mystery object into space before returning to Earth

IRON AND ICE
Redcliffe Partners' Ukrainian Space Regulation Review

SpaceX postpones Starlink launch as thick clouds persist

Swarm announces pricing for world's lowest-cost satellite communications network

Machine-learning nanosats to inform global trade

IRON AND ICE
18 SPCS now predicts debris-on-debris collisions in space, enhancing Space Domain Awareness for all

Radiation levels on Moon 2.6 times greater than ISS: study

Satcom to foster resilient digital systems

Arianespace to resume OneWeb constellation deployment

IRON AND ICE
Search for New Worlds at Home with NASA's Planet Patrol Project

CHEOPS space telescope makes ultra-precise temperature and size measurements of an unusual giant planet

Let them eat rocks

Evolution of radio-resistance is more complicated than previously thought

IRON AND ICE
SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.