|
. | . |
|
by Staff Writers Washington DC (SPX) Aug 21, 2015
Two new reports advance efforts to identify components of dark matter and energy, which together comprise about 95% of the universe yet leave much to scientists' imaginations. Both experiments illustrate how basic questions about the universe's development can be addressed by laboratory-scale experiments. In the first report, Elana Aprileand colleagues - members of the XENON Collaboration - report on their search for dark matter, a hypothetical matter, the existence of which is inferred from its gravitational effects on visible matter. While gravitational processes have been thought to involve standard model particles like neutrinos and photons, more recent studies of the physical processes forming our universe suggest new particle types - like WIMPs (or weakly interacting massive particles) - are involved. Experiments that test this notion look at how these proposed dark matter particles interact with standard particle types; for example, when WIMPs and standard model particles interact, they create recoiling charged particles visible in detectors like the underground XENON100 detector located in Italy. Here, Aprile and colleagues used this instrument, a large tank of liquid xenon that forms a target for WIMPs, to detect distinct signals from recoil. With no evidence for particular signals, their results set limits on several types of dark matter candidates that have been proposed. Paul Hamilton et al. searched for a hypothetical force called a chameleon field, one of the most prominent candidates for dark energy - a force thought to have propelled the expansion of the universe. For about a decade, scientists have been looking for a chameleon field, which modifies the wave functions of matter. Here, in searching for a source for these fields, Hamilton et al. used a light-pulse atom interferometer. Their experiments greatly constrain existing theories of dark energy. A Perspective by Jorg Schmiedmayer and Hartmut Abele provides additional insights into both reports, which tackle some of the most pressing issues of current physics. Article #13: "Atom-interferometry constraints on dark energy," by P. Hamilton; M. Jaffe; P. Haslinger; Q. Simmons; H. Muller at University of California, Berkeley in Berkeley, CA; H. Muller at Lawrence Berkeley National Laboratory in Berkeley, CA; J. Khoury at University of Pennsylvania in Philadelphia, PA.
Related Links XENON Project American Association for the Advancement of Science Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |