![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Mainz, Germany (SPX) Feb 02, 2021
Theoretical physicists of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz are working on a theory that goes beyond the Standard Model of particle physics and can answer questions where the Standard Model has to pass - for example, with respect to the hierarchies of the masses of elementary particles or the existence of dark matter. The central element of the theory is an extra dimension in spacetime. Until now, scientists have faced the problem that the predictions of their theory could not be tested experimentally. They have now overcome this problem in a publication in the current issue of the European Physical Journal C. Already in the 1920s, in an attempt to unify the forces of gravity and electromagnetism, Theodor Kaluza and Oskar Klein speculated about the existence of an extra dimension beyond the familiar three space dimensions and time - which in physics are combined into 4-dimensional spacetime. If it exists, such a new dimension would have to be incredible tiny and unnoticeable to the human eye. In the late 1990s this idea has seen a remarkable renaissance, when it was realized that the existence of a fifth dimension could resolve some of the profound open questions of particle physics. In particular, Yuval Grossman of Stanford University and Matthias Neubert, then a professor at Cornell University, showed in a highly cited publication that the embedding of the Standard Model of particle physics in a 5-dimensional spacetime could explain the so far mysterious patterns seen in the masses of elementary particles. Another 20 years later, the group of Matthias Neubert - since 2006 on the faculty of Johannes Gutenberg University in Mainz (Germany) and spokesperson of the PRISMA+ Cluster of Excellence - made another unexpected discovery: they found that the 5-dimensional field equations predicted the existence of a new, heavy particle with similar properties as the famous Higgs boson but a much heavier mass - so heavy, in fact, that it cannot be produced even at the highest-energy particle collider in the world: the Large Hadron Collider (LHC) at the European Center for Nuclear Research CERN near Geneva (Switzerland). "It was a nightmare", recalls Javier Castellano Ruiz, a PhD student involved in the research, "we were excited by the idea that our theory predicts a new particle, but it appeared to be impossible to confirm this prediction in any foreseeable experiment."
The detour through the fifth dimension Even the abundance of dark matter in the cosmos, as observed in astrophysical experiments, can be explained by their theory. This offers exciting new ways to search for the constituents of the dark matter - literally via a detour through the extra dimension - and obtain clues about the physics at a very early stage in the history of our universe, when the dark matter was produced. "After years of searching for possible confirmations of our theoretical predictions, we are now confident that the mechanism we have discovered would make the dark matter accessible to forthcoming experiments, because the properties of the new interaction between ordinary matter and dark matter - which is mediated by our proposed particle - can be calculated accurately within our theory" says Matthias Neubert, head of the research team. "In the end - so our hope - the new particle may be discovered first through its interactions with the dark sector." This example nicely illustrates the fruitful interplay between experimental and theoretical basic science - a hallmark of the PRISMA+ Cluster of Excellence.
![]() ![]() How heavy is dark matter Brighton UK (SPX) Jan 28, 2021 Scientists have calculated the mass range for Dark Matter - and it's tighter than the science world thought. Their findings - due to be published in Physics Letters B in March - radically narrow the range of potential masses for Dark Matter particles, and help to focus the search for future Dark Matter-hunters. The University of Sussex researchers used the established fact that gravity acts on Dark Matter just as it acts on the visible universe to work out the lower and upper limits of Dark Matter ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |