. 24/7 Space News .
TIME AND SPACE
Scientists propose a new heavy particle similar to the Higgs boson
by Staff Writers
Granada, Spain (SPX) Feb 24, 2021

Simulation of a collision in the Large Hadron Collider, producing the Higgs boson.

Unlike the Higgs boson, discovered at CERN's Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this collider. The University of Granada is among the participants in this major scientific advancement in Theoretical Physics, which could help unravel the mysteries of dark matter

Scientists from the University of Granada (UGR) and the Johannes Gutenberg University Mainz (Germany) have recently published a study in which they endeavour to extend the Standard Model of particle physics (the equivalent of 'the periodic table' for particle physics) and answer some of the questions that this model is unable to answer. Such puzzles include: What is dark matter made of? Why do the various constituents of fermionic dark matter have such different masses? Or, why is the force of gravity much weaker than electromagnetic interaction?

This work, published in the European Physical Journal C, is based on the existence of a dimension in spacetime that is "so small that we can only detect evidence of it through its indirect effects," explains one of the authors of the article, Adrian Carmona, Athenea3i Fellow at the UGR and a member of the Department of Theoretical Physics and the Cosmos.

As early as the 1920s, in an attempt to unify the forces of gravity and electromagnetism, Theodor Kaluza and Oskar Klein speculated on the existence of an extra dimension beyond the familiar three space dimensions and time (which, in physics, are combined into a 4-dimensional spacetime).

Such models became popular in the 1990s, when theoretical physicists realized that theories with curved extra dimensions could explain some of the major mysteries in this field. However, despite their many strengths, such models generally lacked a viable dark-matter candidate.

Now, more than 20 years later, Adrian Carmona and collaborators from the University of Mainz, Professor Matthias Neubert and doctoral student Javier Castellano, have predicted the existence of a new heavy particle in these models with properties similar to those of the famous Higgs boson.

A new dimension
"This particle could play a fundamental role in the generation of masses of all the particles sensitive to this extra dimension, and at the same time be the only relevant window to a possible dark sector responsible for the existence of dark matter, which would simultaneously solve two of the biggest problems of these theories that, a priori, appear disconnected," explains the UGR researcher.

However, unlike the Higgs boson, which was discovered at CERN's Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this, the highest-energy particle collider in the world.

In the article, the researchers explore other possible ways of discovering this particle by looking for clues about the physics surrounding a very early stage in the history of our universe, when dark matter was produced.

Research Report: "A warped scalar portal to fermionic dark matter"


Related Links
University Of Granada
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists manipulate magnets at the atomic scale
Lancaster UK (SPX) Feb 15, 2021
Fast and energy-efficient future data processing technologies are on the horizon after an international team of scientists successfully manipulated magnets at the atomic level. Physicist Dr Rostislav Mikhaylovskiy from Lancaster University said: "With stalling efficiency trends of current technology, new scientific approaches are especially valuable. Our discovery of the atomically-driven ultrafast control of magnetism opens broad avenues for fast and energy-efficient future data processing techno ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronauts training for space station missions

Russian Progress Cargo Craft Docks to Station

National Student Space Conference 2021

Several tech payloads from ISS National Lab on Northrop Grumman CRS-15

TIME AND SPACE
Russia plans at least 10 launches from Baikonur in 2021

DLR ready to test first upper stage for Ariane 6

NASA assigns astronauts to next SpaceX Crew-4 mission to ISS

Kremlin 'interested' in Elon Musk-Putin conversation

TIME AND SPACE
Mars rover mission could drive research for decades to come

Perseverance hits 'bullseye' on Mars landing

Skoltech's recent achievement takes us one step closer to Mars

'7 minutes of terror': Perserverance rover's nail-biting landing phase

TIME AND SPACE
Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

China's 'space dream': A Long March to the Moon and beyond

Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

TIME AND SPACE
French village says 'non' to Elon Musk's space-age internet

Axiom Space raises $130M in Series B funding

SpaceX launches Starlink satellites, loses booster in sea

First Airbus Eurostar Neo satellite is born

TIME AND SPACE
More sustainable recycling of plastics

'We just want to play': Iran gamers battle reality of US sanctions

Sloshing quantum fluids of light and matter to probe superfluidity

Arch Mission Foundation announces first in series of Earth Archives

TIME AND SPACE
On the quest for other Earths

NASA's TESS discovers new worlds in a river of young stars

Lasers reveal the secret interior of rocky exoplanets

A new way of forming planets

TIME AND SPACE
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.