. 24/7 Space News .
TIME AND SPACE
Scientists may have discovered whole new class of black holes
by Laura Arenschield
Columbus OH (SPX) Nov 01, 2019

file illustration only

Black holes are an important part of how astrophysicists make sense of the universe - so important that scientists have been trying to build a census of all the black holes in the Milky Way galaxy.

But new research shows that their search might have been missing an entire class of black holes that they didn't know existed.

In a study published in the journal Science, astronomers offer a new way to search for black holes, and show that it is possible there is a class of black holes smaller than the smallest known black holes in the universe.

"We're showing this hint that there is another population out there that we have yet to really probe in the search for black holes," said Todd Thompson, a professor of astronomy at The Ohio State University and lead author of the study.

"People are trying to understand supernova explosions, how supermassive black stars explode, how the elements were formed in supermassive stars. So if we could reveal a new population of black holes, it would tell us more about which stars explode, which don't, which form black holes, which form neutron stars. It opens up a new area of study."

Imagine a census of a city that only counted people 5'9" and taller - and imagine that the census takers didn't even know that people shorter than 5'9" existed. Data from that census would be incomplete, providing an inaccurate picture of the population. That is essentially what has been happening in the search for black holes, Thompson said.

Astronomers have long been searching for black holes, which have gravitational pulls so fierce that nothing - not matter, not radiation - can escape. Black holes form when some stars die, shrink into themselves, and explode. Astronomers have also been looking for neutron stars - small, dense stars that form when some stars die and collapse.

Both could hold interesting information about the elements on Earth and about how stars live and die. But in order to uncover that information, astronomers first have to figure out where the black holes are. And to figure out where the black holes are, they need to know what they are looking for.

One clue: Black holes often exist in something called a binary system. This simply means that two stars are close enough to one another to be locked together by gravity in a mutual orbit around one another. When one of those stars dies, the other can remain, still orbiting the space where the dead star - now a black hole or neutron star - once lived, and where a black hole or neutron star has formed.

For years, the black holes scientists knew about were all between approximately five and 15 times the mass of the sun. The known neutron stars are generally no bigger than about 2.1 times the mass of the sun - if they were above 2.5 times the sun's mass, they would collapse to a black hole

But in the summer of 2017, a survey called LIGO - the Laser Interferometer Gravitational-Wave Observatory - saw two black holes merging together in a galaxy about 1.8 million light years away. One of those black holes was about 31 times the mass of the sun; the other about 25 times the mass of the sun.

"Immediately, everyone was like 'wow,' because it was such a spectacular thing," Thompson said. "Not only because it proved that LIGO worked, but because the masses were huge. Black holes that size are a big deal - we hadn't seen them before."

Thompson and other astrophysicists had long suspected that black holes might come in sizes outside the known range, and LIGO's discovery proved that black holes could be larger. But there remained a window of size between the biggest neutron stars and the smallest black holes.

Thompson decided to see if he could solve that mystery.

He and other scientists began combing through data from APOGEE, the Apache Point Observatory Galactic Evolution Experiment, which collected light spectra from around 100,000 stars across the Milky Way. The spectra, Thompson realized, could show whether a star might be orbiting around another object: Changes in spectra - a shift toward bluer wavelengths, for example, followed by a shift to redder wavelengths - could show that a star was orbiting an unseen companion.

Thompson began combing through the data, looking for stars that showed that change, indicating that they might be orbiting a black hole.

Then, he narrowed the APOGEE data to 200 stars that might be most interesting. He gave the data to a graduate research associate at Ohio State, Tharindu Jayasinghe, who compiled thousands of images of each potential binary system from ASAS-SN, the All-Sky Automated Survey for Supernovae. (ASAS-SN has found some 1,000 supernovae, and is run out of Ohio State.)

Their data crunching found a giant red star that appeared to be orbiting something, but that something, based on their calculations, was likely much smaller than the known black holes in the Milky Way, but way bigger than most known neutron stars.

After more calculations and additional data from the Tillinghast Reflector Echelle Spectrograph and the Gaia satellite, they realized they had found a low-mass black hole, likely about 3.3 times the mass of the sun.

"What we've done here is come up with a new way to search for black holes, but we've also potentially identified one of the first of a new class of low-mass black holes that astronomers hadn't previously known about." Thompson said. "The masses of things tell us about their formation and evolution, and they tell us about their nature."


Related Links
Ohio State University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
How to spot a wormhole if they exist
Buffalo NY (SPX) Oct 24, 2019
A new study outlines a method for detecting a speculative phenomenon that has long captured the imagination of sci-fi fans: wormholes, which form a passage between two separate regions of spacetime. Such pathways could connect one area of our universe to a different time and/or place within our universe, or to a different universe altogether. Whether wormholes exist is up for debate. But in a paper published on Oct. 10 in Physical Review D, physicists describe a technique for detecting these ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
US vows closer cooperation with French space agency

Nanoracks and Kayser to jointly open temperature controlled microgravity research on ISS

Travel boom has not made world smaller, says writer Pico Iyer

Falklands banking on king penguins to drive nature tourism

TIME AND SPACE
US Air Force hosts hypersonics pitch day

DARPA updates competitor field for flexible, responsive launch to orbit

Air-breathing engine precooler achieves record-breaking Mach 5 performance

New rocket fairing design offers smoother quieter ride

TIME AND SPACE
Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

TIME AND SPACE
China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

TIME AND SPACE
European network of operations centres takes shape

SpaceX to launch 42,000 satellites

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

TIME AND SPACE
Las Cumbres helping to develope a Cyberinfrastructure Institute for Astronomical Data

What About Space Traffic Management?

New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

OMG developing new standard for interface for Software Defined Radios

TIME AND SPACE
TESS reveals an improbable planet

Building blocks of all life gain new understanding

Simulations explain giant exoplanets with eccentric, close-in orbits

Cascades of gas around young star indicate early stages of planet formation

TIME AND SPACE
SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.