. 24/7 Space News .
TIME AND SPACE
Scientists make waves with black hole research
by Staff Writers
Nottingham UK (SPX) Jun 15, 2017


Analogue black hole machine is pictured. Credit The University of Nottingham

Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe. They have successfully simulated the conditions around black holes using a specially designed water bath.

Their findings shed new light on the physics of black holes with the first laboratory evidence of the phenomenon known as the superradiance, achieved using water and a generator to create waves.

The research - Rotational superradiant scattering in a vortex flow - has been published in Nature Physics. It was undertaken by a team in the Quantum Gravity Laboratory in the School of Physics and Astronomy.

The work was led by Silke Weinfurtner from the School of Mathematical Sciences. In collaboration with an interdisciplinary team she designed and built the black hole 'bath' and measurement system to simulate black hole conditions.

Dr Weinfurtner said: "This research has been particularly exciting to work on as it has bought together the expertise of physicists, engineers and technicians to achieve our common aim of simulating the conditions of a black hole and proving that superadiance exists. We believe our results will motivate further research on the observation of superradiance in astrophysics."

What is superradiance?
The Nottingham experiment was based on the theory that an area immediately outside the event horizon of a rotating black hole - a black hole's gravitational point of no return - will be dragged round by the rotation and any wave that enters this region, but does not stray past the event horizon, should be deflected and come out with more energy than it carried on the way in - an effect known as superradiance.

Superadiance - the extraction of energy from a rotating black hole - is also known as the Penrose Mechanism and is a precursor of Hawking Radiation - a quantum version of black-hole superradiance.

What's in the Black Hole Lab?
Dr Weinfurtner said: "Some of the bizzare black hole phenomena are hard, if not, impossible to study directly. This means there are very limited experimental possibilities. So this research is quite an achievement."

The 'flume', is specially designed 3m long, 1.5m wide and 50cm deep bath with a hole in the centre. Water is pumped in a closed circuit to establish a rotating draining flow. Once at the desired depth waves were generated at varied frequenices until the supperadiant scattering effect is created and recorded using a specially designed 3D air fluid interface sensor.

Tiny dots of white paper punched out by a specially adapted sewing machine were used to measure the flow field - the speed of the fluid flow around the analogue black hole.

It all started from humble beginnings
This research has been many years in the making. The initial idea for creating a supperradiant effect with water started with a bucket and bidet. Dr Weinfurtner said: "This research has grown from humble beginnings. I had the initial idea for a water based experiment when I was at the International School for Advanced Studies (SISSA) in Italy and I set up an experiment with a bucket and a bidet. However, when it caused a flood I was quickly found a lab to work in!

After her postdoc, Dr Weinfurtner went on to work with Bill Unruh, the Canadian born physicist who also has a made seminal contributions to our understanding of gravity, black holes, cosmology, quantum fields in curved spaces, and the foundations of quantum mechanics, including the discovery of the Unruh effect.

Her move to the University of Nottingham accelerated her research as she was able to set up her own research group with support from the machine shop in the School of Physics and Astronomy.

Research paper

TIME AND SPACE
RIT study suggests dying stars give newborn black holes a swift kick
Rochester NY (SPX) Jun 06, 2017
New information gleaned from gravitational wave observations is helping scientists understand what happens when massive stars die and transform into black holes. Rochester Institute of Technology researcher Richard O'Shaughnessy and collaborators reanalyzed the merging black holes detected by LIGO (Laser Interferometer Gravitational Wave Observatory) on Dec. 26, 2016. "Using essentia ... read more

Related Links
University of Nottingham
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Pence hails new NASA astronauts as 'best of us'

Bread Me Up, Scotty: Crumb-Free Pastries Coming to the ISS

Additional Astronaut on the Space Station Means Dozens of New Team Members on the Ground

NASA Prepares for Future Space Exploration with International Undersea Crew

TIME AND SPACE
NASA awards Universal Stage Adapter contract for SLS

Proton returns to flight with US satellite after 12 month hiatus

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

TIME AND SPACE
Walkabout Above 'Perseverance Valley'

Window to a watery past on Mars

NASA Finds Evidence of Diverse Environments in Curiosity Samples

Opportunity Surveying the spillway into Perseverance Valley

TIME AND SPACE
What China's space ambitions have to do with politics

Moon or Mars - humanity's next stop

China to open space station to scientists worldwide

China achieves key breakthrough in multiple launch vehicles

TIME AND SPACE
Jumpstart goes into alliance with major aerospace and defence group ADS

Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

TIME AND SPACE
Cloudy with a chance of radiation: NASA studies simulated radiation

Metal-ion catalysts and hydrogen peroxide could green up plastics production

Liquids are capable of supporting waves with short wavelengths only

New sound diffuser is 10 times thinner than existing designs

TIME AND SPACE
The Art of Exoplanets

A planet hotter than most stars

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

ALMA Finds Ingredient of Life Around Infant Sun-like Stars

TIME AND SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.