. | . |
Scientists identify liquid-like atoms in densely packed solid glasses by Staff Writers Beijing, China (SPX) Aug 30, 2022
Metallic glass is an important advanced alloy, holding promise for broad engineering applications. It appears as a solid form in many aspects, with beautiful metal appearance, exceeding elasticity, high strength, and a densely packed atomic structure. However, this all-solid notion has now been challenged. Prof. BAI Haiyang from the Institute of Physics of the Chinese Academy of Sciences (CAS) has recently shown the existence of liquid-like atoms in metallic glasses. These atoms inherit the dynamics of high-temperature liquid atoms, revealing the nature of metallic glasses as part-solid and part-liquid. Results were published in Nature Materials. Condensed matter can generally be classified into solid and liquid states. Under extreme conditions or in specific systems, matter exists in special states that simultaneously exhibit some properties of both solids and liquids. In this case, solids may contain rapidly diffusing, liquid-like atoms that can move fast even at low temperatures. For example, ice enters a "superionic" state under high pressure at high temperatures. In this state, H atoms can diffuse freely while O atoms are fixed in their sublattices. Such special states are also observed in Earth's inner core and in the Li-conducting materials of advanced batteries, which are drawing growing attention in science and engineering. In this study, the researchers revealed that liquid-like atoms exist in densely packed metallic glasses. Combining extensive dynamical experiments and computer simulations, they found that when the viscosity of a liquid deviates from Arrhenius behavior, not all atoms take part in cooperative flow and subsequent solidification. In fact, some atoms can maintain liquid Arrhenius behavior even when the system is cooled down to a glass state, thus appearing as persistent liquid-like atoms that lead to fast relaxation at rather low temperatures. "A glassy solid is essentially mostly solid and a small part liquid. Even at room temperature, liquid-like atoms in a glassy solid can diffuse just as easily as in its liquid state, with an experimentally determined viscosity as low as 107 Pa-s, while the viscosity of the solid part is larger than 1013 Pa-s," said Prof. BAI. These findings provide a clearer microscopic picture of glasses. This new picture can help scientists better understand how the properties of glass materials are related to their dynamics. For example, liquid-like atoms control the anelasticity of glasses and may affect their ductility. Moreover, the strong relationship between liquid-like atoms and disordered structure also has implications for studying the topological origin of fast diffusion in solids, such as superionic-state matters and ion conductors. This study was supported by the National Science Foundation of China, the Natural Science Foundation of Guangdong Province, and the Strategic Priority Research Program of CAS, among others.
Research Report:Liquid-like atoms in dense-packed solid glasses
PPE can be recycled to make stronger concrete Melbourne, Australia (SPX) Aug 29, 2022 Engineers at RMIT University have developed a method to use disposable personal protective equipment (PPE) to make concrete stronger, providing an innovative way to significantly reduce pandemic-generated waste. The RMIT team is the first to investigate the feasibility of recycling three key types of PPE - isolation gowns, face masks and rubber gloves - into concrete. Published in the journals Case Studies in Construction Materials, Science of the Total Environment and Journal of Cleaner Pro ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |