![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Brooks Hays Washington (UPI) Dec 28, 2017
Scientists at the University of California, San Francisco have developed a technique for creating 3D shapes out of living tissue. Mammalian cells move and behave in predictable ways. By arranging mechanically active cells into matrix-like layers of fibers, scientists were able to create self-folding shapes. The tissue mimics developmental processes, assuming a variety of shapes, including bowls, coils and ripples. "Development is starting to become a canvas for engineering, and by breaking the complexity of development down into simpler engineering principles, scientists are beginning to better understand, and ultimately control, the fundamental biology," UCSF researcher Zev Gartner said in a news release. "In this case, the intrinsic ability of mechanically active cells to promote changes in tissue shape is a fantastic chassis for building complex and functional synthetic tissues." Many labs and material scientists have designed 3D structures out of living tissue, but micro-molding and 3D printing techniques yield products without important structural qualities. By allowing the tissue layers to self-shape, scientists can ensure the finished product features all of the expected qualities. The method mimics the hierarchical choreography of animal cells during developmental processes. Scientists dubbed the method "DNA-programmed assembly of cells," or DPAC. "We're beginning to see that it's possible to break down natural developmental processes into engineering principles that we can then repurpose to build and understand tissues," said Alex Hughes, a postdoctoral fellow at UCSF. "It's a totally new angle in tissue engineering." Hughes and his colleagues detailed the new process in a paper published this week in the journal Developmental Cell. Scientists were surprised to find the complex arrangement of cells to respond so simply and predictably. "This idea showed us that when we reveal robust developmental design principles, what we can do with them from an engineering perspective is only limited by our imagination," Gartner said. "Alex was able to make living constructs that shape-shifted in ways that were very close to what our simple models predicted." Researchers plan to look for and tap into new development patterns found during various stages of embryo development -- mechanical processes that could inspire new shapes and patterns.
![]() Osaka, Japan (SPX) Dec 28, 2017 Printed replacement human body parts might seem like science fiction, but this technology is rapidly becoming a reality with the potential to greatly contribute to regenerative medicine. Before any real applications, "bioprinting" still faces many technical challenges. Processing the bio-ink and making it stick to itself and hold the desired printed gel structure have been proving particul ... read more Related Links Space Medicine Technology and Systems
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |