![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Moscow, Russia (SPX) Apr 11, 2018
Scientists from Moscow Institute of Physics and Technology and Skoltech have demonstrated the high-temperature superconductivity of actinium hydrides and discovered a general principle for calculating the superconductivity of hydrides based on the periodic table alone. The results of their study were published in The Journal of Physical Chemistry Letters. High-temperature superconductivity is a phenomenon of zero electrical resistance in certain materials at temperatures above -196C (the temperature of liquid nitrogen) that physicists, chemists and materials scientists worldwide have been intensely researching for decades, as room-temperature superconductors open up vast prospects for the power industry, transport, and other technology-driven sectors. Currently, the record holder in high-temperature superconductivity is hydrogen sulfide (H3S), which functions as a superconductor at 1.5 million atmospheres and temperatures of down to -70C. Such pressure levels can only be attained in a lab environment, not in real life, and the temperature is way below room temperature, so the search continues for new superconductors. Perhaps an even higher-temperature superconductivity can be attained in metal-hydrogen compounds. Yet the link between chemical composition and superconductivity was unclear, leaving scientists to puzzle out by trial and error. A group of chemists led by Artem R. Oganov, Professor at Moscow Institute of Physics and Technology and Skoltech, discovered that certain elements capable of forming superconducting compounds are arranged in a specific pattern in the periodic table. It was established that high-temperature superconductivity develops in substances containing metal atoms that come close to populating a new electronic subshell. Metal atoms inside the crystal are assumed to become highly sensitive to the positions of the neighboring atoms, which would result in strong electron-phonon interaction - the underlying effect of conventional superconductivity. Based on this assumption, the scientists supposed that high-temperature superconductivity could occur in actinium hydrides. Their supposition was verified and confirmed: superconductivity was predicted for AcH16 at temperatures of -69-22 oC at 1.5 million atmospheres. "The very idea of a connection between superconductivity and the periodic table was first put forward by Dmitry Semenok, a student at my lab. The principle he discovered is very simple and it is really amazing that no one had hit upon it before," says Artem Oganov.
![]() ![]() The mirror-like physics of the superconductor-insulator transition Lemont, IL (SPX) Apr 10, 2018 The world on the other side of Alice in Wonderland's looking-glass is not what it seems, but the mirror-like physics of the superconductor-insulator transition operates exactly as expected. Scientists know this to be true following the observation of a remarkable phenomenon, the existence of which was predicted three decades ago but that had eluded experimental detection until now. The observation confirms that fundamental quantum states, superconductivity and superinsulation, both arise in mirror ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |