. | . |
Scientists develop new surface finishing for 3D-printing by Amy Wallace Washington (UPI) Mar 13, 2017 Researchers at Waseda University in Japan developed a process they say dramatically improves the quality of 3D-printed resin products. The new technique improves surface texture and increases structural rigidity through a process called 3D Chemical Melting Finishing, or 3D-CMF, which uses a tool similar to a felt-tip pen to apply solvent selectively to specific parts of the printed product. The current methods for surface finishing or smoothing are polishing or grinding down areas to reduce the appearance of "ribs," and make the price of 3D printers increase. Other methods for finishing or smoothing use vaporized solvents to melt and smooth the surface of a printed piece, however, indiscriminate dissolution of the entire surface of the product, the complexity of the machine and large amounts of flammable solvents make it less attractive for in-home use. The new 3D-CMF process, developed by Kensuke Takagishi and Professor Shinjiro Umezu, of Waseda University, used a Fused Deposition Modeling, or FDM, type of 3D printer was able to improve surface "ribbing," or the rough appearance from grooves between layers of applied resin material. The 3D-CMF method also removes less material, which creates less waste and provides more precise shaping using less solvent and, therefore, lowering costs. The new method is a significant step toward in-home 3D printing, the researchers say. The study is published in the journal Scientific Reports.
Raleigh NC (SPX) Mar 07, 2017 Inspired by origami, North Carolina State University researchers have found a way to remotely control the order in which a two-dimensional (2-D) sheet folds itself into a three-dimensional (3-D) structure. "A longstanding challenge in the field has been finding a way to control the sequence in which a 2-D sheet will fold itself into a 3-D object," says Michael Dickey, a professor of chemic ... read more Related Links Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |