. | . |
Scientists develop alternative cement with low carbon footprint by Staff Writers Halle, Germany (SPX) Aug 19, 2021
Researchers at the Martin Luther University Halle-Wittenberg (MLU) in Germany and the Brazilian University of Para have developed a climate-friendly alternative to conventional cement. Carbon dioxide (CO2) emissions can be reduced during production by up to two thirds when a previously unused overburden from bauxite mining is used as a raw material. The alternative was found to be just as stable as the traditional Portland cement. The results were published in Sustainable Materials and Technologies. Houses, factories, staircases, bridges, dams - none of these structures can be built without cement. According to estimates, almost six billion tonnes of cement were produced worldwide in 2020. Cement is not only an important building material, it is also responsible for around eight per cent of manmade CO2 emissions. "Portland cement is traditionally made using various raw materials, including limestone, which are burned to form so-called clinker," explains Professor Herbert Pollmann from MLU's Institute of Geosciences and Geography. "In the process, the calcium carbonate is converted into calcium oxide, releasing large quantities of carbon dioxide." Since CO2 is a greenhouse gas, researchers have been looking for alternatives to Portland cement for several years. One promising solution is calcium sulphoaluminate cement, in which a large portion of the limestone is replaced by bauxite. However, bauxite is a sought-after raw material in aluminium production and not available in unlimited quantities. Together with Brazilian mineralogists, the MLU team has now found an alternative to the alternative, so to speak: They do not use pure bauxite, but rather an overburden: Belterra clay. "This layer of clay can be up to 30 metres thick and covers the bauxite deposits in the tropical regions of the earth, for example in the Amazon basin," explains Pollmann. "It contains enough minerals with an aluminium content to ensure good quality cement. It is also available in large quantities and can be processed without additional treatment." Another advantage: The Belterra clay has to be removed anyway, so it does not have to be extracted only for cement production. Even though cement cannot be entirely produced without calcium carbonate, at least 50 to 60 percent of the limestone can be replaced by Belterra clay. The process has another environmentally relevant advantage: the burning process only requires 1,250 degrees Celsius - 200 degrees less than for Portland cement. "Our method not only releases less CO2 during the chemical conversion, but also when heating the rotary kilns", says Pollmann. By coupling these effects, CO2 emissions can be reduced by up to two thirds during cement production. In extensive laboratory tests, the mineralogists were able to prove that their alternative cement meets all the quality requirements placed on traditional Portland cement. Further research projects will now investigate whether there are also overburden sources in Germany suitable for cement production. "Raw materials containing clay minerals with a lower aluminium content could be used particularly in construction projects where lower-grade concrete is sufficient," explains Pollmann. "There is still huge potential here to further reduce carbon dioxide emissions."
Research Report: "Production of low- CO2 cements using abundant bauxite overburden Belterra Clay"
High-speed camera captures a water jet's splashy impact as it pierces a droplet Boston MA (SPX) Aug 19, 2021 Squirting a jet of water through a drop of liquid may sound like idle fun, but if done precisely, and understood thoroughly, the splashy exercise could help scientists identify ways to inject fluids such as vaccines through skin without using needles. That's the motivation behind a new study by engineers at MIT and the University of Twente in the Netherlands. The study involves firing small jets of water through many kinds of droplets, hundreds of times over, using high-speed cameras to capture ea ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |