. | . |
Scientists design new material to harness power of light by Staff Writers Lowell MA (SPX) Dec 19, 2018
Scientists have long known that synthetic materials - called metamaterials - can manipulate electromagnetic waves such as visible light to make them behave in ways that cannot be found in nature. That has led to breakthroughs such as super-high resolution imaging. Now, UMass Lowell is part of a research team that is taking the technology of manipulating light in a new direction. The team - which includes collaborators from UMass Lowell, King's College London, Paris Diderot University and the University of Hartford -has created a new class of metamaterial that can be "tuned" to change the color of light. This technology could someday enable on-chip optical communication in computer processors, leading to smaller, faster, cheaper and more power-efficient computer chips with wider bandwidth and better data storage, among other improvements. On-chip optical communication can also create more efficient fiber-optic telecommunication networks. "Today's computer chips use electrons for computing. Electrons are good because they're tiny," said Prof. Viktor Podolskiy of the Department of Physics and Applied Physics, who is the project's principal investigator at UMass Lowell. "However, the frequency of electrons is not fast enough. Light is a combination of tiny particles, called photons, which don't have mass. As a result, photons could potentially increase the chip's processing speed." By converting electrical signals into pulses of light, on-chip communication will replace obsolete copper wires found on conventional silicon chips, Podolskiy explained. This will enable chip-to-chip optical communication and, ultimately, core-to-core communication on the same chip. "The end result would be the removal of the communication bottleneck, making parallel computing go so much faster," he said, adding that the energy of photons determines the color of light. "The vast majority of everyday objects, including mirrors, lenses and optical fibers, can steer or absorb these photons. However, some materials can combine several photons together, resulting in a new photon of higher energy and of different color." Podolskiy says enabling the interaction of photons is key to information processing and optical computing. "Unfortunately, this nonlinear process is extremely inefficient and suitable materials for promoting the photon interaction are very rare." Podolskiy and the research team have discovered that several materials with poor nonlinear characteristics can be combined together, resulting in a new metamaterial that exhibits desired state-of-the-art nonlinear properties. "The enhancement comes from the way the metamaterial reshapes the flow of photons," he said. "The work opens a new direction in controlling the nonlinear response of materials and may find applications in on-chip optical circuits, drastically improving on-chip communications."
Discovery of single material that produces white light could boost efficiency of LED bulbs Toledo OH (SPX) Dec 06, 2018 Physicists at The University of Toledo are part of an international team of scientists who discovered a single material that produces white light, opening the door for a new frontier in lighting, which accounts for one-fifth of global energy consumption. "Due to its high efficiency, this new material can potentially replace the current phosphors used in LED lights - eliminating the blue-tinged hue - and save energy," said Dr. Yanfa Yan, professor of physics at UT. "More research needs to be ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |