. | . |
Scientists build gene circuits capable of complex computation by Brooks Hays Boston (UPI) Jun 3, 2016
Until now, synthetic biological systems have focused exclusively on either analog or digital computation. Researchers at MIT have devised a technique for creating cellular gene circuits capable of complex computation. Analog computation, also called continuous computation, is the type of processing happening as the human eye adjusts to changing light conditions. Digital computation involves binary decision making, on or off processes. The new synthetic cellular circuitry designed by MIT scientists performs like a comparator, receiving analog input signals and converting them into digital output signals. In this instance, the circuitry is designed to gauge the level of a chemical -- a potential signature of disease -- and should the level reach a threshold, the circuitry releases a dose of the relevant drug. "Digital is basically a way of computing in which you get intelligence out of very simple parts, because each part only does a very simple thing, but when you put them all together you get something that is very smart," lead researcher Timothy Lu, an associate professor of biological engineering and head of the Synthetic Biology Group at MIT's Research Laboratory of Electronics, said in a news release. "But that requires you to be able to put many of these parts together, and the challenge in biology, at least currently, is that you can't assemble billions of transistors like you can on a piece of silicon," Lu added. The gene circuit features a threshold module capable of analog computation -- sensing the level of a specific chemical. The module is linked to a recombinase gene, which can turn a specific DNA segment on or off by inverting it. The gene segment can be designed to control a specific gene expression, thus, enabling a digital out -- in this case, the release of a drug. "So this is how we take an analogue input, such as a concentration of a chemical, and convert it into a 0 or 1 signal," Lu explained. "And once that is done, and you have a piece of DNA that can be flipped upside down, then you can put together any of those pieces of DNA to perform digital computing." Lu and his research partner, former microbiology PhD student Jacob Rubens, designed a circuit that linked both a lower and upper analog threshold to digital outputs. The circuit was capable of measuring glucose and releasing a different drug if levels got too high or too low. The new research was published in the journal Nature Communications.
Related Links Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |