. 24/7 Space News .
STELLAR CHEMISTRY
Scientists resolve the nature of powerful cosmic objects
by Staff Writers
Santa Barbara CA (SPX) Aug 08, 2019

The black hole in the middle of a Seyfert galaxy is surrounded by a cloud of dust that blocks the broad emission spectra from the material near the center.

At the center of certain galaxies are objects of such tremendous brightness they outshine the rest of their galaxy by four orders of magnitude. Our understanding of these active galactic nuclei has progressed by leaps and bounds over the past several decades, though recently debate has centered on the identity of some of these objects.

Now, a team of researchers has settled some questions and exposed exciting new findings about these cosmic phenomena. Their results appear in the Monthly Notices of the Royal Astronomical Society.

Quasars, the most powerful active galactic nuclei, shine like lighthouses from their home galaxies. These beams are powered by supermassive black holes millions to billions of times the mass of the sun.

"The [radius of this] black hole is 1/10,000th of the distance just to our nearest star, and yet it can produce the power of 10,000 entire galaxies," said coauthor Robert Antonucci, a physics professor at UC Santa Barbara.

The gas around these black holes spins so fast that the color of the light it emits is stretched out. The material approaching us appears bluer, while receding gas appears redder. This stretches the normally sharp spikes in the light spectra into broad peaks.

The radiation from these systems also energizes distant gas clouds, which are less dense. Because these clouds rotate more slowly, the peaks in their light emission stay sharp. And because they are less dense, the atoms have enough time to make slower transitions between energy states without interference from neighboring atoms, so scientists see additional spikes that are due to heat rather than radiation.

A dim quasar is called a Seyfert galaxy, and the debate stems from the distinction between the two types of Seyfert galaxies. Type 1 galaxies produce both of these spectra, but the light from Type 2 galaxies is missing the broad peaks. Before they knew about the black holes at the center, scientists had thought the two were different entities, and were puzzled over what could be powering them.

Antonucci had proposed that they were actually the same objects, simply seen from different perspectives. Namely, that when the broad regions were missing from the spectra, it was because we were looking at the systems side-on, and a ring of dust was obscuring the inner part of the nucleus from our view.

Antonucci noticed that, unlike normal starlight, the light from Seyfert 2 galaxies tended to slightly favor one polarization, suggesting some of it had reflected our way, like sunlight off the surface of a lake. The polarization suggested that these photons had originated near the center of the black hole and traveled along the jets of high-energy matter that stream away from its poles.

By filtering out everything except this polarization, Antonucci was able to peer into the center of the obscured object, and he found the missing broad spectra. This confirmed that there was matter swirling around the black hole emitting broad bands of light, only to have most of this blocked by the surrounding ring of dust. The two types of Seyfert galaxies were, in fact, one class of objects.

Disagreement, Answers and New Questions
Twenty or so years ago, a group of scientists suggested that some galaxies actually may not emit these broad lines, calling them "true Seyfert 2 galaxies." Using X-ray surveys, they found one called NGC 3147 that had neither a dust ring nor the broad emission lines. Proponents claimed that this galaxy must be one of these objects.

Scientists in the two camps decided to work together to resolve the issue, posing the question in a bid for a slot on the Hubble Space Telescope's busy schedule. It intrigued the scientists managing Hubble enough that they granted the team an hour of the observatory's time. An hour was all they needed.

The team zoomed in on the center of NGC 3147 and found the broad line region. The object was so dim that the surrounding starlight had overwhelmed this feature. After two decades of debate, the idea of "true Seyfert IIs" seems to have finally been laid to rest.

In Antonucci's opinion, this is a true triumph of the scientific method. The virtue of science is that it eventually corrects itself. "What's most important to astronomers is pruning this dead branch," he said.

What's more, the team also discovered a few new features, including that NGC 3147's broad line spectrum was stretched far more than most of them had expected. "That means the region producing the emission lines is in fact much closer to the black hole than normal," Antonucci said. This did, however, match the predictions of one of Antonucci's coauthors, Ari Laor at the Technion in Israel.

The shape of this part of the spectrum also shows clear evidence of the effects of both special and general relativity. However, Antonucci is quick to point out that scores of other experiments have already established the validity of these theories.

Curiously, the researchers also found evidence of a hot, glowing accretion disk despite the fact that matter is only trickling into NGC 3147's black hole. "According to our best theory, there shouldn't be enough friction to convert the gravitational in-fall energy into heat," Antonucci explained.

Hubble has granted the group roughly six hours of additional time on the telescope to follow up their observations. They plan to use this time to further probe the center of NGC 3147 in greater detail. Hopefully a closer look will help suss out the answers to this new set of questions.

Research Report: "HST Unveils a Compact Mildly Relativistic Broad-Line Region in the Candidate True Type 2 NGC 3147"


Related Links
University Of California, Santa Barbara
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Ghosts of ancient explosions live on in stars today
Pasadena CA (SPX) Aug 07, 2019
When small, dense stars called white dwarfs explode, they produce bright, short-lived flares called Type Ia supernovae. These supernovae are informative cosmological markers for astronomers - for example, they were used to prove that the universe is accelerating in its expansion. White dwarfs are not all the same, ranging from half of the mass of our Sun to almost 50 percent more massive than our Sun. Some explode in Type Ia supernovae; others simply die quietly. Now, by studying the "fossil ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Two weeks of science and beyond on ISS

Study identifies way to enhance the sustainability of manufactured soils

As iPhone sales sputter, Apple moves toward reinvention, again

Flight by Light: Mission accomplished for LightSail 2

STELLAR CHEMISTRY
Paragon Space Development Corporation CELSIUS Technology NASA Tipping Point Contract Award

Lease option agreed for Space Hub Sutherland

Pentagon working on 9 separate hypersonic missile projects to take on Russia, China

Little SLS launches in low speed wind tunnel

STELLAR CHEMISTRY
MEDLI2 installation on Mars 2020 aeroshell begins

New finds for Mars rover, seven years after landing

Optometrists verify Mars 2020 rover's perfect vision

World first as kits designed to extract metals from the Moon and Mars blast off for space station tests

STELLAR CHEMISTRY
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

STELLAR CHEMISTRY
Space data relay system shows its speed

Arianespace launches INTELSAT 39 and EDRS-C

ATLAS Space Operations extends global reach with nine new ground stations

Next satellite in the European Data Relay System is fuelled

STELLAR CHEMISTRY
Millennium Space Systems to test orbital debris solutions with TriSept, Rocket Lab and Tethers Unlimited

How roads can help cool sizzling cities

Could Mexico cactus solve world's plastics problem?

Recovering color images from scattered light

STELLAR CHEMISTRY
Pre-life building blocks spontaneously align in evolutionary experiment

Shining starlight on the search for life

Hordes of Earth's toughest creatures may now be living on Moon

Potentially habitable planet found in new solar system

STELLAR CHEMISTRY
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.