. | . |
Scientists Find More Evidence the Universe Is a Violent Place by Staff Writers London, UK (SPX) May 03, 2019
Massive collisions in the universe between black holes or dead stars appear to be at the higher end of estimates as, following the latest switching on of the three upgraded LIGO and Virgo detectors, scientists have detected gravitational waves emanating from the collision of two neutron stars, and another that could be the first evidence of neutron star-black hole collision. "These two new triggers are further evidence that our universe regularly rings with the aftershocks of colossal astronomical events," said Professor Sheila Rowan, Director of the University of Glasgow's Institute for Gravitational Research. "We'd been deaf to those sounds before the detectors equipped us with the opportunity to hear them, and each event gives invaluable new data points to expand our understanding of our cosmos." UK scientists and engineers play key roles in the construction and operation of the Laser Interferometer Gravitational-Wave Observatory (LIGO), which runs two detectors in the United States. A third detector named Virgo is operated by a European collaboration and is based in Italy. On 25 April LIGO and Virgo detected gravitational waves from what appears to be a collision between two neutron stars about 500 million light-years from Earth. Neutron stars are the dense remnants of massive exploded stars. Just one day later, the network registered another event about 1.2 billion light-years away and initial analysis suggests it might have been the collision of a neutron star and black hole. Professor Mark Hannam, Director of Cardiff University's Gravity Exploration Institute said: "Yet again the LIGO and Virgo detectors have surpassed expectations. Our most optimistic estimates were for a detection every week, and the first month of the run gave us five candidates." Professor Alberto Vecchio, Director of the Institute of Gravitational Wave Astronomy, University of Birmingham, said: "LIGO-Virgo have got off to a flying start in the new observing run. We are busy following up several gravitational-wave detection candidates from binary systems of black holes and neutron stars. If the instruments continue to perform as they've done so far, it's going to be many sleepless nights of hard work to tease out from the data the full richness of information from these intriguing cosmic collisions." While neutron star collisions cause gravitational waves, their impacts also release light across the electromagnetic spectrum. In 2017, LIGO-Virgo's first-ever detection of a gravitational wave from a neutron star collision was also observed by many conventional telescopes. This time, telescopes around the world once again raced to track the sources and pick up the light expected to arise from these mergers. Hundreds of astronomers eagerly pointed telescopes at patches of sky suspected to house the signal sources. However, at this time, neither of the sources has been pinpointed. These new results join the growing list of possible gravitational-wave detections since LIGO and Virgo resumed operations last month. Professor Andreas Freise, Deputy Director, Institute of Gravitational Wave Astronomy, University of Birmingham said: "What a fantastic start! We had anticipated that LIGO and Virgo would observe many new signals during this observation run. It is very exciting to see nature providing us with several new signals in the first month already, fulfilling our earlier predictions." The discoveries come just weeks after LIGO and Virgo were turned back on. The twin detectors of LIGO - one in Washington and one in Louisiana - along with Virgo, located at the European Gravitational Observatory (EGO) in Italy, resumed operations 1 April after undergoing a series of upgrades to increase their sensitivities to gravitational waves - ripples in space and time. Each detector now surveys larger volumes of the universe than before, searching for extreme events such as smash-ups between black holes and neutron stars. Dr. Vivien Raymond, from Cardiff University's Gravity Exploration Institute, said: "LIGO-Virgo's third observing run has already proven to be more interesting than we expected, barely a month after it started. It's exciting to think about the next surprises for us to discover in the universe."
What Earth's gravity reveals about climate change Potsdam, Germany (SPX) Apr 23, 2019 On March 17, 2002, the German-US satellite duo GRACE (Gravity Recovery and Climate Experiment) were launched to map the global gravitational field with unprecedented precision. After all, the mission lasted a good 15 years - more than three times as long as expected. When the two satellites burnt up in the Earth's atmosphere at the end of 2017 and beginning of 2018, respectively, they had recorded the Earth's gravitational field and its changes over time in more than 160 months. This so-called tim ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |