. | . |
Scientist explains sulfur behavior in Venus atmosphere by Staff Writers Moscow, Russia (SPX) Apr 28, 2016
The beautiful dark stripes on ultraviolet images of Venus's disc are in no way connected with the crystalline sulfur particles in its atmosphere - the ultraviolet is absorbed by another substance. This has been proven by data obtained from the first ever model of the distribution of sulfur in Venus's gaseous envelope which has been developed by the head of MIPT's Laboratory of High Resolution Infrared Spectroscopy of Planetary Atmospheres, Prof. Vladimir Krasnopolsky. The results of the study have been published in the scientific journal Icarus. If we look at Venus in a normal optical telescope, we see only a dull yellowish-white sphere without any other distinguishing features. However, if we capture an image in the ultraviolet range, the picture changes drastically - dark and light areas appear on the disc, reflecting the dynamics of the atmosphere. "These areas mean that somewhere in the upper cloud layer there is a substance that is absorbing UV radiation. Over the past 30 years there have been a wide range of hypotheses as to what this substance could be. Many scientists believed that sulfur particles were responsible for the absorption. But now we will have to abandon this hypothesis," says Krasnopolsky.
He already questioned the "sulfur hypothesis" in 1986 by demonstrating that the amount of the aerosol was not enough to explain the effect of UV absorption. In the new paper, In particular, the model included certain processes of the breakdown of sulfur compounds under the influence of light that had not been studied in previous models. As a result, a profile was compiled of the concentration of sulfur aerosol at various altitudes. The model showed that sulfur aerosol is predominantly found in the lower cloud layer. Its mass constitutes approximately one tenth of the layer and it is not externally visible. However, observations in the near UV radiation range obtained from the Soviet interplanetary station Venera 14 indicate that absorption in this range occurs in the upper cloud layer at the altitude of approximately 60 km. "This means that sulfur aerosol cannot be the cause of absorption of Venus's atmosphere in the near UV range," concludes Krasnopolsky. In his opinion, the main absorber and "artist" drawing the stripes on Venus's disc could be ferric chloride (FeCl3), which was discovered in the planet's atmosphere by the X-ray fluorescence spectrometer on board Venera 12. The cloud layer of Venus is mainly composed of liquid droplets of sulfuric acid (H2SO4). In 1981, the Space Research Institute of the RAS conducted laboratory tests of the reflection coefficient in the near UV range for a 1% solution of ferric chloride in sulfuric acid, and their results are fully consistent with the observations of the present study. "We can therefore consider this mixture of sulfuric acid and ferric chloride to be the most likely substance causing this very mysterious UV absorption," says Krasnopolsky. Research paper: Sulfur aerosol in the clouds of Venus
Related Links Moscow Institute of Physics and Technology Venus Express News and Venusian Science
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |